
FULL-TURN SYMPLECTIC MAP 
FROM A GENERATOR IN A FOURIER-SPLINE BASIS* 

J. S. Berg, R. L. Warnock, and R. D. Ruth 
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 

Ii. Forest 
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 

Abaft-ad 
Given an arbitrary symplectic tracking code, one can 

construct a full-turn symplectic map that approximates 
the result of the code to high accuracy. The map in de- 
fined implicitly by a mined-variable generating function. 
The generator is represented by a Fourier Beriea in an- 
gle variables, with coeflicients given an Bspline functions 
of action variables. It is constructed by wing resulta of 
single-turn tracking from many initial conditions. The 
method has been applied to a realistic model of the SSC 
in three degrees of freedom. Orbits can be mapped sym- 
plectically for 10’ turns on an IBM RS6000 model 320 
workstation, in a run of about one day. 

I. INTRODUCTION 
Long term stability of orbits in circular accelerators 

is usually studied by tracking codes, which integrate the 
equations of motion through the lattice by some symplec- 
tic integration algorithm, proceeding element-by-element. 
There have been various attempts to summarize the full- 
turn evolution defined by a tracking code in an analytic 
formula, a full-turn map. If the map represented the code 
to sufficient accuracy, and could be evaluated in eubstan- 
tially less time than the time for tracking one turn, it could 
be used for economical studies of long-term evolution. 

The method of automatic differentiation [l] allows 
one to differentiate the tracking algorithm, so as to gen- 
erate a large number of Taylor coelkiente of the corre 
spending map. The resulting map, given as a truncated 
Taylor series, cannot be exactly eymplectic. In a region of 
phase space close to the dynamic aperture, the failure of 
symplecticity may be so large as to raise doubt about the 
usefulness of the map. This is the case for the highest or- 
der Taylor maps generated for the SSC (Superconducting 
Super Collider). 

One possibility in to symplectify the map by produc- 
ing a mixed- variable generating function that induces an 
exactly symplectic map that closely approximates the un- 
derlying map. Thii can be done by using formal power 
developments in Cartesian coordinates to solve the non- 
linear equations that define the generator in terms of the 
map. This method was propoeed and carried out long 
ago [2]. Because of convergence difficulties it proved not 
to be very useful for some accelerators (for instance the 
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Berkeley Advanced Light Source and the Tevatron), but 
recently Yan, Channell, and Syphers have reported 8ome 
aucceas with an application to the SSC [3]. 

We describe a different way to construct a symplec- 
tic full-turn map from a tracking code or other “Bource 
map”. We again define the map through a mixed-variable 
generating function, but given as a function of action- 
angle coordinates rather than Cartesian coordinates. We 
avoid the ur+e of Taylor series in favor of methods based 
on Fourier developmentn and epline interpolation. We be- 
lieve that these methods are more appropriate at large 
amplitudes, since they uue information on the function to 
be represented at many points in the region of interest. 

This paper ia a brief summary of our mapping 
method. Details <and aaaociated references can be found 
in [4]. 

II. CONSTRUCTING THE MAP 

The map is defined to be a transformation from the 
“old” variables (I, (z) to the “new” variables (I’, &‘). The 
generating function in this case will be in terms of old 
action and new angle variables: 

G (I, Qi’) = c pm (I) ei=* . 
PL 

(1) 

The transformation equations are then 

I’ = I + c+g (I, W) , # = 0’ + GI (I, 0’) . (2) (3) 

We start with a %ource map,” which gives the final 
variables (YJ an explicit function of the initial variables: 

I’=I-tR(I,i), *‘=O+S(I,#). (4) (5) 

This map will usually be defined as the result of tracking 
over one turn, but in the numerical work reported here it 
was a 12th order Taylor series map. 

The Fourier coefhciente are obtained from (2) and (4) 
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Since we do not know R aa a function of @‘, we perform a 
change of variables in the integral to get an integral over 
@i: 

gam (1) = (2r): im, 
I 
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(7) 
e-im.e(x,*) det(1 + 8+ (I,@)). 

The integral is then discretised to obtain 

ona (I) =im, n, Jp 
l -C&(I,#,)e’‘=+ 

I 

e”w”e(*~*~Idet(l + 8+ (I, a)), 

where Jp is the number of ‘Pp mesh points in the B di- 
mension, and the summation ia over integer vectors j such 
that j# E (0,. . . , .Zp - 1). 

The m = 0 mode must be handled differently. We 
instead must use 8 values. The resulting summation is 

lo(I) = -- niJp F 8 (1, *ddet(l + @r, (1, %I). (9) 

To increase the speed of evaluation of the map, 
Fourier modes that are smaller than the expected or de 
sired accuracy of the map can be removed from the gen- 
erating function. 

We obtain values of g,,, (I) for values on a mesh in 1. 
We then chooee a eet of basis functions Bj’“’ (I) to use in 
interpolating the coefficients such that 

Sm (I) = F 9m.J n B,!:) (fi3) . (10) 
P 

The index o labels the different degrees of freedom. For 
the m # 0 modes, the interpolation is straightforward. 
For the m = 0 mode, one must be careful to consider 
the fact that the derivatives of the basin functions are 
linearly dependent. Details of this can be found in [4]. It 
is advantageous to choose Bsplinea for the basis functions. 
Because they have a small region where they are nonzero, 
their use greatly increasee the speed of evaluation of the 
map. 

III. EVALUATING THE MAP 

The map is evaluated by performing a Newton itera- 
tion to obtain a’ and then rubstituting into (2) to get I’. 
An initial guess for the Newton iteration is provided by 
an explicit map with a small number of modes retained. 

IV. THREE DIMENSIONS 

The method can be used in any number of dimen- 
sions. In a three dimensional accelerator problem, how- 
ever, it ia not advantageous to do the third dimension in 
action-angle variables. Instead, note that most of an ac- 
celerator ring is time independent. One can construct a 

map for the time independent part that has the energy 
deviation arr an additional parameter, which in treated on 
qual footing with the actions. The timedependent parts 
(usually r.f. cavities) can then be treated separately as 
the user chocaeu. Time&-flight information is obtained 
by taking a derivative of the generating function with re- 
apect to energy deviation. 

V. PRECONDITIONING THE SOURCE MAP 

Finally, note that since one nanb to perform the ac- 
tion interpolation over a finite domain that doea not in- 
clude the origin in each phase apace plane, the plain source 
map b lometima not well-mrited for direct application of 
thii method. Thii can be overcome hy performing a pre 
liminary canonical transformation on the source map oo 
M to have the new murce map take an annulue of ini- 
tial condition.9 into a rimilar (larger) annulus. This can 
be done eesily by a linear transformation or a low-order 
Taylor eeriea mixed-variable generating function. 

VI. RESULTS 

As an example, we take the eource map to be a 12th 
order Taylor series map for a realistic model of the SSC. 
Results for accuracy (agreement with the source map) and 
iteration time for a three dimensional map are shown in 
figures 1 through 2. The “mode cutoff is a measure of 
the maximum rixe of the Fourier modes that are being 
removed from the generating function. The number of 
actions indicaten the number of mesh points in each di- 
mension of action interpolation. The order refers to the 
order of Bsplinea ueed in action interpolation. The curves 
have approximately alope 1 when the error ie dominated 
by the number of Fourier modes being thrown away. They 
begin to level off when the error ia dominated by the ac- 
tion interpolation (low actions) or failure of symplecticity 
of the source map (high actions). 

We have constructed maps at amplitudea near the 
dynamic aperaturt, and have found that we cnn track 
stable trajectories for lo7 terms in about a half a day 
in two dimensions and about a day in three dimensions. 
Times are on an IBM RS6000 320H workstation. 

Finally, in figure 3 we show “survival plots,” and see 
that our map gives a rlmilar long-term dynamic apera- 
turea to the map it ia trying to approximate. 
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Figure 1: Relative accuracy of 3-D map 
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Figure 2: Iteration time of 3-D map. 
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Figure 3: Survival plot. Circlea are Taylor series, croeaea are the map. 
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