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1. Particle Motion in Plane Monochromatic Wave electromagnetic field and described by a field tensor F,k 
Fields may, in classical electrodynamics, be described by 

The dynamics of electrically charged particles in 
electromagnetic wave fields is of relevance for a large 
variety of physical phenomena. Therefore this topic is 
dealt with more or less extensively in many text books 
on classical electrodynamics. 

(1) du, /dr = q. F,, uk + r,, G,k u” 

with no = e/me. 

The present paper can be seen in the context of recent 
work on the origin of high energy cosmic ray particles 
[I ,231. Plane-wave formalism without radiation reaction 
based on the lorenk equation is adequate for the 
description of particle dynamics if the wave amplitude is 
of moderate strength. Particle motion then is periodic in 
velocity space so that there is an upper limit to particle 
energy. 

The first term on the right side of this equation of motion 
is constructed from the Lofenk derivative u’-, = no F, uz of 
the particle velocity u,, representing the Lorenk force. 
The Lorenk term contains the first order contributions in 
the interaction constant e to the total force acting on the 
particle under consideration. 

We have shown that plane-wave formalism without 
radiation reaction also is a powerfull tool to define and to 
calculate important features of particle dynamics in 
spherical wave fields. Among these features are the 
acceleration boundary [4], the plasma border [5] and the 
l/roz - law of asymptotic energy [l]. 

In the second term on the right side represents the 
radiation force. f0 = 2e2/3mc3 is the radiation constant 
and G,, is the radiation force tensor. 

But in extremely strong wave fields the influence of 
radiation forces has to be taken into account. Motion 
under the influence of radiation reaction no longer is 
periodic in velocity space. Panicles, at least in principle, 
can achieve unlimited values of energy [B-15]. This 
mechanism, therefore, may be relevant for the 
understanding of cosmic particle acceleration to 
extremely high energies as, for example, in cosmic jets 
associated with rotating magnetized configurations. 
One may also think of man made jets constituted of 
laser beams connecting natural or artificial satellites [16- 
l&q 

Both, the field tensor F,II , as well as the radiation force 
tensor G,, are antisymmetric tensors thus allowing for 
the conservation of the norm of particle velocity u, UJ = c* 
or, as one may take it, for the particle to stay on its 
mass shell p, P = m2 c2 

Dirac in his early work [19] has suggested 

(2) G,, = ( [ d2u, / dr* ] IJ~ - u, [ d2u, / dr: ] ) I c* 

The Lofenk-Dirac equation ( L-O equation ), un- 
fortunately, also describes run-away solutions: For 
vanishing external fields. F,, = 0. by multiplication with 
dui I c2 dT equation (1) with (2) reduces to 

!t is the intention of this paper to present and to discuss 
some results, which may be of interest in the above 
mentioned context. 

(3) d {(du,/dr)(du’/dr)) I dr = 2 ((du/dT)(du’ldt)) I T,, 

with the ( unphysical ) solution 

(4) d log y I dr = ( d log 7 I dr )- exp( 5 / z0 ). 

2. Equations of Motion 

Momentum transfer between a particle of mass m and 
electric charge e and all other electromagnetically 
charged partic& around, represented by an external 

These difficulties have widely been discussed in 
literature. Obviously. they arise, since in the radiation 
force tensor (2) the kinematic acceleration du, I d-c has 
been introduced instead of the Lorenk acceleration uL, = 

nOF,, u* But there are strong arguments in favour of the 
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Lorenk accelaration, because in self-consistent Maxwell 
theory the only forces available are the electromagnetic 
forces. 

Therefore, instead of (2), one may introduce the 
radiation force tensor 

(5) G1, = ( ucL, uk - u, I.?-~, ) I c* 

constructed from the second Loienk derivative I.&L, = ~2 

F,,Fk’ u, The radiation force constructed with the help of 
the radiation force tensor (5) contains fourth order 
contributions in the interaction constant e to the total 
force acting on the particle. 

The second part of this radiation force, =0 IP IJL, ui I c* , 
the Larrnor term. can be deduced through Lorenk 
transformation from Lannor’s radiation formula for the 
rate of energy at which the particle emits 
electromagnetic waves in the momentary rest frame 
MRS, P = ( 7O I m )( e E )MRs2, where E is the electric 
vector. 

Thus, in the MRS, the Larrnor term characterizes the 
particle as a source of electromagnetic waves while, at 
the same time, the first part of the radiation force 
characterizes the particle as a sink of electromagnetic 
waves. This characterization corresponds to the fact that 
the second part of the radiation force, the Lamor term, 
can be related to a retarded Green’s function, while the 
first part of the radiation force can be related to an 
advanced Green’s function, as has already been 
considered by Dirac [19]. 

In the MRS, non relativistic kinematics and dynamics 
applies: Under the action of a force F ( any force ) 
during some interval of the time coordinate 6t a 
momentum F A = ?ip is transferred to the particle. But 
in the same time interval 8 the energy transferred to the 
particle vanishes: ( F. 6x ) = ( F, v ) fit = 6T = 0 

Correspondingly, the zeroth component of the radiation 
force ( as of any force ) vanishes in the MRS: the 
particle can be said to function as a relay for wave 
energy, which is emitted at the same rate as it is 
absorbed, it actually mediates the transfer of energy 
from incoming to outgoing waves. 

In the MRS. the equation of motion (1) with (5) may be 
written 

(6) dv/dt=+,E+r, q02[E, HI. 

where v is the velocity vector and H is the magnetic field 
vector. The first term on the right side of this equation of 
motion represents the static Coulomb force, which is 
proportional to the electric vector, while the last term. 

which is proportional to Poynting’s vector, represents the 
radiation force ( often referred to as radiation pressure ). 

Instead of (5), L.D. Landau and EM. Lifschik [20] have 
suggested the radiation force tensor 

(7) G,,,=~o(dF,,/dr)+(uLL,u~-u,uLLr)/~2, 

leading to the Lorentz-Dirac-Landau equation ( L-D-L 
equation ) 

63) du, Idr = q,, F,, uc + Q TV ( dF,, / dr ) uk 

+ 7. ( IF, Ilk - ll) ULLt ) ilk I c* ( 

which incorporates an additonal third oder contribution in 
the interaction constant e. ‘lo t0 ( dF,k / dr ) uk 

In the MRS. the L-D-L equation has the form 

(9) dv/dt=rj,E+r,~,dE/dt+r, qa2[E. H] 

In general, within a given inerlial frame of reference S, 
the particle is expected to loose energy through the 
emission of electromagnetic waves and, at the same 
time, to gain energy through the absorption of 
electromagnetic waves in addition to the change of 
energy caused through the work done by the Lorenk 
force. 

In many examples the radiative loss of energy is known 
to exceed the radiative gain of energy, as e.g. for 
particle motion within a plane perpendicular to an 
external homogeneous, constant magnetic field when 
the particle moves in on the narrowing windings of a 
spiral, while dissipating energy in the form of 
synchrotron radiation. 

In other examples the radiative loss and gain of energy 
compensate, as for particle motion on a straight line 
parallel to an external homogeneous, constant electric 
field, While dissipating energy in the form of 
electromagnetic waves through longitudinal acceleration 
the increase of kinetic particle energy through the work 
done by the Coulomb force occurs at the same rate it 
would do without radiation being produced. 

Still there are examples in which the radiative gain of 
energy exceeds the radiative loss of energy. This is Ihe 
case, e.g., for particle motion in an external plane, 
monochromatic wave fteld. Actually this can already be 
expected to happen from the appearance of the 
Poynting vector in the equation of motion (1) with (5) or 
with (7) within the MRS. 

3. Asymptotic Behaviour of Energy Development 

In view of possible applications to cosmic particle 
acceleration we have studied the asymptotic behaviour 
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of solutions of the L-D-L equation for sufficiently large 
values of particle phase cb = x0 - x1 , where x0 = x0/ r, 
with x0 = ct is the dimensionless time coordinate, r,, = c/o> 
= i. / 2~ is the light radius and h is the wave length, while 
x’ = xl I rL is the spatial, Cartesian coordinate in the 
direction of wave propagation. The conditions for the 
asymptotic regime are 

(10) CD>> 1 

and 

(11) w. I, fO* b, I2 >> 1 . 

where w = d@ I ds with ( ds )2 = dxl dxi and the initial 

value w0 = w ( 0, ). Especially, w0 = 1 for particles 

initially at rest. I0 = c r0 I r, is the dimensionless radiation 
constant and f, = ( e / mc2 ) rL E, is the dimensionless 
field amplitude. 

Under these premises 

(12) y -’ u’ 
-> I0 ( f02 I 4 ) 

[ 1 + f2 ( sink sin% + coS2a cos2@ )] CD, 

where a ist the polarization parameter with a = 0 for 
linear polarization and a = + R I 4 for circular 
polarization, furthermore 

(13) x’ -> (1124) I,* f,l [ 1 + 6’ I 2 ] (03 + (l/32) lo2 fg6 
[ (D* sin(2Q) + @ cos(20) 1 cos(2u). 

Therefore, in the special case of circular potartzation, 

(14) y -> u’ -> I, ( f02 I 4 )[ 1 + f02 12 ] 0 

and 

(15) x1 -> ( 1 / 24 ) lo2 foa ( 1 + f,,2 I 2 ] co3 + const 

so that 

(16) .{ -> u’ -> ( 3’012 ) I,‘” f,,m [ 1 + fo2/2 ]m ( x’ )In. 

Obviously, there are the following two regimes which 
can be distinguished 

(17) y -> u’ -> ( 3’“12 ) lo’n r,m ( x’ )“J , 
for fo2 << 1 

and 

(18) ., -> ~1 -> ( 3’0125” ) I,‘” fg2 ( X’ )ln 
= ( 4X )dn em m-7” cJ H,’ 1’” vu3 , 

for fo2 >z 1. 
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