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We study both numerically and analytically some simple
Hamiltonian systems perturbed by a random noise or by
a periodic (or quasi-periodic) noise. In this way we sim-
ulate the effects of the ripple in the power supply on the
betatronic motion in a particle accelerator. We consider
the dependence of the diffusion in the phase space on the
relevant parameters of our system like the nonlinear terms,
the strength of the noise and, in the deterministic case, its
modulation frequency. We discuss also the possibility of
describing the evolution of a distribution function for an
integral of motion of the unperturbed system, like the ac-
tion or the energy, by means of a Fokker—Plank equation.
The results are compared with numerical simulations.

I. INTRODUCTION

Recent experiments in high energies hadron colliders have
shown that the beam lifetime is substantially decreased
when the nonlinear effects due to the multipolar errors
are combined with the fluctuations of current (ripples)
f1]. At present no satisfactory interpretation of the ex-
perimental results has been found and no simple models
have been extensively investigated. In the experiments the
slow periodic modulation is enhanced but it is not evident
that the effects of a stochastic modulation can be a pri-
ori neglected; on the other hand when the dynamics is
almost linear, no appreciable diffusion is observed and the
beam is stable. This suggests that, if a stochastic modu-
lation is present it affects the phase rather than the am-
plitude of the betatronic oscillations; the diffusion would
then depend uniquely on the coupling with the nonlinear
terms. We analyze here a simple model of a nonlinear inte-
grable hamiltonian system where, the frequency is modu-
lated with a stochastic perturbation or periodic perturba-
tion. The phase space of the unperturbed hamiltonian has
a separatrix which corresponds to the dynamic aperture.
The presence of modulation allows the orbits to reach the
separatrix and escape to infinity in a finite time interval.
We look for the time evolution of the distribution function
for a given initial population. Even in this oversimplified
model the numerical simulations are extremely heavy and
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it is hard to investigate the dependence on the parameters.
The behaviour of the stochastic and periodic modulation is
radically different. In the first case we justify theoretically
the deseription of the diffusion in the nonlinear invariant
of motion, by a Fokker-Planck equation [2] with a vari-
able diffusion coefficient. The presence of the separatrix
(dynamic aperture) is taken into account with an absorb-
ing barrier, whereas a reflecting boundary condition (flux
conservation) is imposed at the origin. The presence of a
sextupole leads to a cubic diffusion coefficient which makes
the diffusion extremely slow close to the origin, whereas it
becomes significant in the vicinity of the separatnx where
the absorption by the barrier simulates the escape to in-
finity.

The slow periodic modulation is analyzed in the framework
of the adiabatic theory [3]. The origin is surrounded by in-
variant domains which are swept by any orbit when the fre-
quency is slowly varied. On the contrary the region swept
by the separatrix is chaotic and once the outer boundary
is reached the escape to infinity still occurs. Compared to
the stochastic modulation, there is a region defined by the
inner boundary of the pulsating separatrix which is sta-
ble and the evolution of the distribution function in the
chaotic region is not of diffusive type.

II.

We consider the Hamiltonian

MODEL AND RESULTS

pZ + .’52 13

H=w (1+ (1) - 5 (1)

which models the betatronic motion in the horizontal plane
in the presence of sextupoles using normalized coordinates.
In (1) £(2) denotes continuous realization of a random sta-
tionary process with zero average {{} = 0 and correlation
G(t —t') = (£(t)£(1')) and ¢ is a small parameter. We will
then consider the limit case in which the correlation length
vanishes and the process becomes § correlated; such a limit
describes the increments of a Wiener process.
Introducing the action angle variables for the harmonic
oscillator z = +/275in @ and p = /2)cosé we have
3/2
H=w)— T].a/z sin® 8 +ew)f (1) = ho(5,6)+ewi€(t) (2)
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By solving exactly the Hamilton’s Jacobi equation for the
hamiltonian hg or approximately by pérturbation theory
we determine a unique transformation 3 = V'(8, J) close to
identity such that ho(j,8) = Ho(J) and

H= Ho(]) +€V(J, B)E(t) (3)

We remark that we have chosen to work with the initial
angle since the simulations are carried out choosing a uni-
form distribution in the initial angle 8.

Following a procedure introduced by Gurievich et al. [4]
in plasma physics, we separate the phase space density,
which satisfies Licuville’s equation, into an average and a
fluctuating part

{p1) =0 (4)

Choosing an initially uniform distribution in the angle or
for t large enough that a uniform distribution is attained,
po will remain independent of ® and will satisfy the Fokker-
Planck equation

p=po+epr, po = {p)

8p0_62 7] 23[)0 3
E—E—a‘j(ve)ﬁ*LO(f) (5)

which is the diffusion equation for the action. The diffusion

coefficient 5

D; = %(Vg) (6)

depends on the action itself and agrees with the quasilin-
ear approximation.

The derivation is based on the Liouville equation and an
expansion for € small; the hypothesis of a § correlated noise
is crucial to obtain & differential equation like (5) rather
than an integro-differential equation. Even limit theorems
in the theory of stochastic processes do not allow to recover
a Fokker-Planck equation if the § correlation hypothesis is
dropped.

Even though the exact computation of Ho(J) and V(J, )
could be carried out we preferred to compute the second
order in perturbation theory since this is the only avail-
able way of determining D(J) in more resalistic models.
According to the canonical perturbation theery we have:

15
Ne=wl - ~—J? 7
H(J)=w/ u12] (7)
and the diffusion coefficient reads
€2 2 21J%
=y = [ J
D 2(9) 2[J+8w2] (8)

The position of the absorbing barrier J = J, is computed
by imposing Ho(J,) = E, where E, = w*/6 is the energy
of the separatrix. A simple computation gives

.6 — /26

Introducing a normalized time and action

J J
y= -, =

7 i (10)
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the Fokker-Planck equation reads

3,00 3 3 21 J‘ Bpo
Eaaly [ ‘s‘—zy] ] (i
v W Y
In figures 1 we compare the distribution function of the
energy, computed by numerical simulation with the solu-
tion of the Fokker-Planck equation at + = .01. The initial
condition was a narrow gaussian in the energy centered at
the middle of the dynamic aperture, the number of par-
ticles in the numerical simulation was 40,000, In figure 2
we show the same distribution function as in fig. 1, but
after a longer time {r = .05). The first order perturbative
calculation of the diffusion coefficient gives an agreement
of ~ 20% while the second order gives almost a best fit

(remark that we had no adjustable parameters).

Figure 1: The distribution function for the energy when
the linear frequency is stochastically perturbed: compari-
son between the numerical simulation and the solution of
the Fokker-Planck’s equation (smooth curve} at r = .01

We have considered the same hamiltonian system with
a slow periodic modulation £(1) = cos{}t with <« w.
According to the adiabatic theory the separatrix is slowly
pulsating with the same frequency 2. We have distributed
the particles uniformly half way on the ring swept by the
separatrix along an unperturbed trajectory. The popula-
tion has a low spread due to the modulation; when the
separatrix crosses a particle then the particle is kicked off
towards infinity. According to this picture, which becomes
exact in the limit 1 — 0, the population remains con-
stant until the encounter with the separatrix occurs after
8 quarter of period T = =/(2Q?), and afterwards it van-
ishes in a very short time interval. When 1 is rather small
f1/w = 5 x 107 this phenomenon is observed with a good
accuracy (Fig. 3 ). When Q/w is increased to 107! the
adiabatic theory is no longer applicable and after a first
rapid decrease, a long queue is observed (Fig. 4) due to
the chaotic region generated by the separatrix.
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Figure 2: The distribution function for the energy when
the linear frequency is stochastically perturbed: compari-
son between the numerical simulation and the solution of
the Fokker-Planck’s equation (smooth curve) at 7 = .05

I1I1.

Certainly the proposed model is a very crude description of
the ripple induced diffusion in particle accelerator however
this can be certainly useful to understand the effect of a
stochastic or periodic perturbation of the linear frequency
of a non-linear Hamiltonian systems. The main defect is
the absence of resonances, which are taken into account
when a discrete description of the lattice is given by an
area preserving map. An extension of the previous results
to a discrete model is perhaps possible but mathematically
much more difficult to be justified. Certainly simulations
can be carried out and the present analysis will be helpful
in interpreting them.

CONCLUSIONS
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Figure 3: Number of particles versus time: the initial pop-
ulation is 10.000, the ratio {1/w is .0005 and each unity on
the z-axis corresponds to 5000 time unities
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Figure 4: Number of particles versus time: the initial pop-
ulation is 10.000, the ratio 1/w is .1 and each unity on the
z-axis corresponds to 5000 time unities

PAC 1993



