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Abstract 

We study both numerically and analytically some simple 
Hamiltonian systems perturbed by a random noise or by 
a periodic (or quasi-periodic) noise. In this way we sim- 
ulate the effects of the ripple in the power supply on the 
betatronic motion in a particle accelerator. We consider 
the dependence of the diffusion in the phase space on the 
relevant parameters of our system like the nonlinear terms, 
the strength of the noise and, in the deterministic case, its 
modulation frequency. We discuss also the possibility Iof 
describing the evolution of a distribution function for an 
integral of motion of the unperturbed system, like the ac- 
tion or the energy, by means of a Fokker-Plank equation. 
The results are compared with numerical simulations. 

I. INTRODUCTION 

Recent experiments in high energies hadron colliders have 
shown that the beam lifetime is substantially decreased 
when the nonlinear effects due to the multipolar ~IIO~S 
are combined with the fluctuations of current (ripples) 
[l]. At present no satisfactory interpretation of the ex- 
perimental results has been found and no simple models 
have been extensively investigated. In the experiments the 
slow periodic modulation is enhanced but it is not evident 
that the effects of a stochastic modulation can be a pri- 
ori neglected; on the other hand when the dynamics is 
almost linear, no appreciable diffusion is observed and the 
beam is stable. This suggests that, if a stochastic modu- 
lation is present it affects the phase rather than the am- 
plitude of the betatronic oscillations; the diffusion would 
then depend uniquely on the coupling with the nonlinear 
terms. We analyze here a simple model of a nonlinear inte- 
grable hamiltonian system where, the frequency is modu- 
lated with a stochastic perturbation or periodic perturba- 
tion. The phase space of the unperturbed hamiltonian has 
a separatrix which corresponds to the dynamic aperture. 
The presence of modulation allows the orbits to reach the 
separatrix and escape to infinity in a finite time interval. 
We look for the time evolution of the distribution function 
for a given initial population. Even in this oversimplified 
model the numerical simulations are extremely heavy and 

it is hard to investigate the dependence on the parameters. 
The behaviour of the stochastic and periodic modulation is 
radically different. In the first case we justify theoretically 
the description of the diffusion in the nonlinear invariant 
of motion, by a Fokker-Planck equation [2] with a vari- 
able diffusion coefficient. The presence of the separatrix 
(dynamic aperture) is taken into account with an absorb- 
ing barrier, whereas a reflecting boundary condition (flux 
conservation) is imposed at the origin. The presence of a 
sextupole leads to a cubic diffusion coefficient which makes 
the diffusion extremely slow close to the origin, whereas it 
becomes significant in the vicinity of the separatrix where 
the absorption by the barrier simulates the escape to in- 
finity. 
The slow periodic modulation is analyzed in the framework 
of the adiabatic theory [3]. The origin is surrounded by in- 
variant domains which are swept by any orbit when the fre- 
quency is slowly varied. On the contrary the region swept 
by the separatrix is chaotic and once the outer boundary 
is reached the escape to infinity still occurs. Compared to 
the stochastic modulation, there is a region defined by the 
inner boundary of the pulsating separatrix which is sta- 
ble and the evolution of the distribution function in the 
chaotic region is not of diffusive type. 

II. MODEL AND RESULTS 

We consider the Hamiltonian 

H = upy (1 + ~((1)) - ; 

which models the betatronic motion in the horizontal plane 
in the presence of sextupoles using normalized coordinates. 
In (1) c(t) denotes continuous realization of a random sta- 
tionary process with zero average (E) = 0 and correlation 
G(1 - 1’) E ([(t)((t’)) and E is a small parameter. We will 
then consider the limit case in which the correlation length 
vanishes and the process becomes 6 correlated; such a limit 
describes the increments of a Wiener process. 
Introducing the action angle variables for the harmonic 
oscillator z = &sin 8 and p = & cos 0 we have 

H = wl-~33/a~in3B+twjE(1) = hl,(j,B)+wjE(t) (2) 
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By solving exactly the Hamilton’s Jacobi equation for the 
hamiltonian hc or approximately by perturbation theory 
we determine a unique transformation J = V(6’, J) close to 
identity such that ho(j, 0) = Hu( J) and 

H = Ho(J) +cV(J,O)E(t) (3) 

We remark that we have chosen to work with the initial 
angle since the simulations are carried out choosing a uni- 
form distribution in the initial angle 8. 
Following a procedure introduced by Gurievich et al. [4] 
in plasma physics, we separate the phase space density, 
which satisfies Liouville’s equation, into an average and a 
fluctuating part 

P=Po+ePl, PO = (P) (PI) = I-J (4) 

Choosing an initially uniform distribution in the angle or 
for t large enough that a uniform distribution is attained, 
p. will remain independent of 0 and will satisfy the Fokker- 
Planck equation 

which is the diffusion equation for the action. The diffusion 
coefficient 

D, = ; (Vi) (6) 

depends on the action itself and agrees with the quasilin- 
ear approximation. 
The derivation is based on the Liouville equation and an 
expansion for E small; the hypothesis of a 6 correlated noise 
is crucial to obtain a differential equation like (5) rather 
than an integro-differential equation. Even limit theorems 
in the theory of stochastic processes do not allow to recover 
a Fokker-Planck equation if the 6 correlation hypothesis is 
dropped. 
Even though the exact computation of Ho(J) and V(J,B) 
could be carried out we preferred to compute the second 
order in perturbation theory since this is the only avail- 
able way of determining D(J) in more realistic models. 
According to the canonical perturbation theory we have: 

H(J) = WJ - ;;J* 

and the diffusion coefficient reads 

D=;(V;)=;[J’+~;] (8) 

The position of the absorbing barrier J = J, is computed 
by imposing Ho(J,) = E, where E, = d/6 is the energy 
of the separatrix. A simple computation gives 

J =p- 
I 

5 

Introducing a normalized time and action 

Y=f, 
J 

r=e2’t 
4 (10) 

I 

the Fokker-Planck equation reads 

~+~ [l+y$] g (11) 
In figures 1 we compare the distribution function of the 
energy, computed by numerical simulation with the solu- 
tion of the Fokker-Planck equation at T = .Ol. The initial 
condition was a narrow gaussian in the energy centered at 
the middle of the dynamic aperture, the number of par- 
ticles in the numerical simulation was 40,000. In figure 2 
we show the same distribution function as in fig. 1, but 
after a longer time (7 = .05). The first order perturbative 
calculation of the diffusion coefficient gives an agreement 
of N 20% while the second order gives almost a best fit 
(remark that we had no adjustable parameters). 

Figure 1: The distribution function for the energy when 
the linear frequency is stochastically perturbed: compari- 
son between the numerical simulation and the solution of 
the Fokker-Planck’s equation (smooth curve) at T = .Ol 

We have considered the same hamiltonian system with 
a slow periodic modulation c(t) = cos f’U with fl << w. 
According to the adiabatic theory the separatrix is slowly 
pulsating with the same frequency n. We have distributed 
the particles uniformly half way on the ring swept by the 
separatrix along an unperturbed trajectory. The popula- 
tion has a low spread due to the modulation; when the 
separatrix crosses a particle then the particle is kicked off 
towards infinity. According to this picture, which becomes 
exact in the limit n + 0, the population remains con- 
stant until the encounter with the separatrix occurs after 
a quarter of period T = r/(2n), and afterwards it van- 
ishes in a very short time interval. When fl is rather small 
n/w = 5 x low4 this phenomenon is observed with a good 
accuracy (Fig. 3 ). When fl/w is increased to 10-l the 
adiabatic theory is no longer applicable and after a first 
rapid decrease, a long queue is observed (Fig. 4) due to 
the chaotic region generated by the separatrix. 
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Figure 2: The distribution function for the energy when 
the linear frequency is stochastically perturbed: compari- 
son between the numerical simulation and the solution of 
the Fokker-Planck’s equation (smooth curve) at T = .05 

III. CONCLUSIONS 

Certainly the proposed model is a very crude description of 
the ripple induced diffusion in particle accelerator however 
this can be certainly useful to understand the effect of a 
stochastic or periodic perturbation of the linear frequency 
of a non-linear Hamiltonian systems. The main defect is 
the absence of resonances, which are taken into account 
when a discrete description of the lattice is given by an 
area preserving map. An extension of the previous results 
to a discrete model is perhaps possible but mathematically 
much more difficult to be justified. Certainly simulations 
can be carried out and the present analysis will be helpful 
in interpreting them. 
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Figure 3: Number of particles versus time: the initial pop 
ulation is 10.000, the ratio fl/w is .0005 and each unity on 
the z-axis corresponds to 5000 time unities 

Figure 4: Number of particles versus time: the initial pop 
ulation is 10.000, the ratio G/w is .l and each unity on the 
z-axis corresponds to 5000 time unities 
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