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Abstract II. MODELLING STOCHASTIC EFFECTS 
In this report we introduce several approaches to stochas- WITH SDES 

tic problems in accelerator physics. The first part of the 
present work treats the concepts of stochastic differential 
equations (SDEs) and of Fokker-Planck equations (FPEs), 
whereas in the second part we concentrate on discrete mod- 
els and investigate a method of calculating density func- 
tions via stochastic mappings. 

I. INTRODUCTION 

The motion of particles in an accelerator is strongly influ- 
enced by various stochastic effects such as ground motion, 
power supply ripples, noise caused by the quantum emis- 
sion of synchrotron radiation and explicit noise in the rf 
system. A good description of external noise, i.e. of the 
influence of a great number of nearly uncorrelated, rapidly 
fluctuating random effects on a system, is the Gaussian 
white noise process (GWN) E(t). This process has the 
properties < t(t) >= 0 and < <(1)<(1’) >= &(t - 1’) 
Another advantage of using the white noise concept is the 
fact, that for such noise “inputs” the resulting process is a 
Markovian process. Markovian processes are those, whose 
future depends only on the present and not on the past 
(“without memory”). We present some methods of treat- 
ing differential equations which include stochastic quan- 
tities and calculate moments and density functions. In 
the case of nonlinear, time dependent coefficients in the 
describing equations very few results exist, and good nu- 
merical tools become necessary. We investigate integration 
schemes for SDEs and apply them to several examples like 
a simple model of the beam-beam interaction and the syn- 
chrotron motion. For the study of the synchrotron motion 
we also chose a kind of complementary access to stochastic 
systems as opposed to stochastic differential equations, the 
Fokker-Planck equation. 

The second part of this study is concerned with a dis- 
crete approach to a nonlinear damped stochastically ex- 
cited system like particle motion in an e--storage ring. 
We present an algorithm for computing the density func- 
tion and follow its evolution in time. By tracking particles 
in a discretized phase space we compute a stochastic ma- 
trix as a time propagator for the density function, again 
making use of the fact that we describe a Markov pro- 
cess. We study simple models of the beam-beam effect 
and compare our results with results obtained via usual 
tracking techniques. 

Including stochastic effects in the equations of mo- 
tion of a dynamical system, the system variables become 
stochastic processes, i.e. time dependent random variables. 
In our investigations we start from equations of the form 

i = f(Z) + @)f$, , 

where f(t) describes the noise process and has the prop- 
erties of the GWN. The first term of the right hand side 
gives the deterministic part of the equation, and the second 
introduces a diffusion component. 
A. Numerical Solution 

For a numerical approach to SDEs. one performs the 
following steps: 
i) Taylor expansion of the approximate solution in the 
stepwidth h 
ai) model the noise process and, if necessary, functionals 
ofit 
tiz) simulate lots of realizations for averaging. 

Difficulties in the simulation procedures are for exam- 
ple contained in the second point of the listing: how can 
such an irregular process as WN, or higher order function- 
als of it be modelled? In simulations these expressions have 
to be substituted by simple functions of random vectors, 
so that they yield the same moments up to a given order, 
which is often quite CPU-time consuming. Therefore one 
is limited to algorithms of low order [1],[2]. 

B. Examples: 

a. Beam-Beam Model: 

As an example for a time-dependent potential we made 
calculations for a one-dimensional SDE with beam-beam 
kick, damping and noise for a simple beam-beam interac- 
tion model (round beams, weak-strong approximation). 

The equation reads: 

with 

f(x, s) = -&r&*( * - $ +’ )&(s), 

where $(s) = Crzp=-, 6(s - nL) and & = uw&. We 
used a ring of length 23.25m with a Q-value of 3.7 and a 
strong beam-beam parameter of &,a = 0.07. The damping 
time was taken to be 1000 turns. We chose the weight of 
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Figure 1: < z2 > vs. no of turns, linear case (lower curves) Figure 2: < J >= K < c >,& = O.ldeg,Wo = O.OOleVs. 
and with beam-beam kick force (upper curves). strong stochastic perturbation d = 0.01. 

the noise such as to have the equilibrium value of < x2 > 
for the harmonic oscillator normalized to 1, These param- 
eters have been chosen in a way to make the effect of the 
periodic kick force easily visible. In the SDE simulation 
we took 500 samples for the averaging over the noise pro- 
cess.We made calculations with the corresponding transfer 
map for the same two systems, using 1000 samples for the 
averaging process, and compared the mapping results with 
the SDE resultsIn figure 1 we show the second moment of 
z, which measures the bunch size in z-direction. The two 
lower curves are the results for the unperturbed harmonic 
oscillator, the two upper curves give the results for the 
same system being periodically kicked by the beam-beam 
force. We suppressed the errorbars in this plot for clarity. 
In both cases, unperturbed (= noisy harmonic oscillator, 
linear system, f(r, s) = 0) and perturbed (= noisy HO plus 
beam-beam kick force), an equilibrium value is reached. 
The good agreement of the curves is obvious, although we 
had “continuous” damping and noise all around the ring in 
the continuous (within stepwidth h) SDE algorithm, com- 
pared to the mappingscheme with already integrated noise 
and damping applied once, at the interaction point, where 
the kick is also invoked. Apart from that, the SDE simu- 
lation was much more CPU-time consuming. 
The calculations were performed on an HP730/9000. 

b. Double Rf System with Stochastzc Excztatzon 

Noise in the accelerating facilities can lead to signifi- 
cant emittance growth and limit the lifetime of a bunched 
proton beam [3]. Here we study the influence of phase 
noise in a double rf system, which is an example of a non- 
linear undamped system perturbed by fluctuating forces. 
J, Wei investigated a double rf system in combination with 
stochastic cooling [4]. Let 4 describe the phase deviation 
of a circulating particle relative to the synchronous parti- 
cle and W = s its canonically conjugated variable, the 
relative deviation in energy from that reference particle. 
The corresponding differential equat.ion reads: 

i = -CwC+sin(Q) + $?wC+sin(m4) + 2Cw&i[(t) 

where Cw = $$,Cm = f$, qe=electric charge of the 
particle, h= harmonic number, yr= transition energy, 9 = 
7+- ,$-, ws=revolution frequency of the synchronous parti- 

cle, pczvelocity of the synchronous particle, E = mcc*y = 
synchronous energy, v6= scaling diffusion parameter for 
the noise term, t(t)= noise process 
For the action variable J = $ Wd$, which is related to the 
emittance via c = $J, we get the approximation [4],[2]: 
< J >= const < (CwW2 + $++[(l - cos($)) - a(1 - 
cos(2#))])~ >, which was used to simulate the growth of 
the action variable. The parameters used were: q = 1, 9 = 
6OkV, h = 1100, m = 2, 7 = 5.75. 10-4, we = 47kHr. 2a, 
p = 1.0, E = 40GeV. 
Another way to study the synchrotron dynamics is to cal- 
culate the FPE in the action variable. Using perturbation 
theory techniques [3] we get the Fokker-Planck equation: 

and can derive the SDE in the action variable J [2]: 

j = ;m-+ + vmJs-[(t), 
with E = $2Cwconsl$. Figure 2 shows the results for 
the emittance growth < J(1) >. In this plot we compare 
the simulations of the $-SDE with those for the .I-SDE 
(500 particles). Both curves agree very well, even on long 
time scales. 

III. COMPLTING DENSITY FUNCTIONS 
VIA STOCHASTIC MAPPINGS 

A quantity of fundamental significance for the descrip- 
tion of particle motion in a storage ring is the density func- 
tion and its evolution in time. It holds the information 
about beam sizes and lifetimes. In general the density is 
obtained via tracking many particles over a large num- 
ber of turns (a few damping times). In what follows we 
describe a discrete model for calculating the phase space 
density function p(z,p, 1) of an electron storage ring in 
the presence of damping, external noise and nonlinearities 
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Figure 3: p(z,p,) 1852 turns=Td,Q = 5.24,< = 0.029,01 = Figure 4: p(z,p.), r-proj., mapping alg.(ZOOp/bin) and 
5.4. lo-¶, 30 x 30-grid, absorbing boundaries at 60. tracking (lop/bin), after frd, $rd,‘,?Ord, Q = 5.14. 

(here: beam-beam force). The idea of the presented algo- 
rithm mainly goes back to A. Gerasimov (51. It consists of 
the construction of a time propagator (two-time transition 
probability) for a discrete Markov process, see also [6]. 

A. The Time Propagator Matrix 

We consider a one-dimensional beam-beam model for 
the interaction of two round beams. The transformation 
for one turn consists of the kick at the IP and of the lin- 
ear part, given by the transfer matrices. The phase space 
is partitioned into discrete states i (n x n-grid), where a 
particular state is identified with a position on the grid. 
For a transition probability having the Markov property, 
the following holds: P(zn+l = jlxn = i;h) = P(s,+l = 
jlz,, = i) = pij(n). P(z,+l = jlz,, = i;h) is the probabil- 
ity of being in state j at time n + 1, after having been in 
state z at time n and having the “history” h. For the two- 
time transition probability this yields: p!:) = CjE,ptjpji;. 
One arranges the probabilities for all possible transitions 
between the different. states as a matrix Ai, = plj (stochas- 
tic matrix). Tracking many particles for a certain number 
of turns, we compute A as the matrix of the relative fre- 
quencies of transitions between the different bins of the 
phase space grid. The number of turns in the tracking can 
be chosen in different ways, for example such as to have 
still enough particles in the tails of the distribution. In 
general one takes one half of the damping time. After we 
have evaluated the time propagator matrix A, we apply it 
successively to the initial density po and simulate the time 
evolution of p : PI = APO, pn = A”p,, = Ap,-,. 

In figure 3 we see a calculation of the vertical density 
after one damping time, starting from a homogeneous ini- 
tial density. 
Figure 4 shows a comparison between direct tracking (IO 
particles/bin) and the mappingalgorithm (ZOO p/bin). The 
agreement is very good, although after 40000 turns the 
“mapped density” curve is slightly below the “direct one”. 
The mapping needed about two orders of magnitude less 
CPU-time. 

B. “Macrostates” and Higher-Dimenszonal Systems 

Instead of calculating the transition probability oper- 
ator for every two gridpoints (or “microstates”)? we now 
search for a partition of the phase space into larger struc- 
tures (“macrostates”) in order to reduce the computing 

effort and !:aodle higher-dimensional systems. We then 
compute the tran*,:tion matrix for these larger units. For 
two-dimensional systems, it is necessary to find a parti- 
tion of an n x n _’ n x n-phase space grid. The iteration 
time parameters thererow have to be chosen in such a way 
ss to get a sufficient small number of macrostates to keep 
the matrices treatable, but nevertheless the macrostates 
should still represent the structure of the phase space. 

IV. CONCLUSIONS 

We introduced several numerical integration algorithms for 
SDEs and applied them to examples in accelerator physics. 
Although the results are good, the methods are very CPU 
time consuming. By making a combined analytical and 
numerical analysis of a nonlinear rf system with phase noise 
we could show that simulations with SDEs and analytical 
perturbation theory were in excellent agreement. 

In the second part of the presented work we have in- 
troduced and tested an algorithm to investigate the mo- 
tion of ultrarelativistic charged particles under the influ- 
ence of damping, noise, and certain non-linear forces. Via 
a stochastic mapping we calculated a time propagator and 
computed a “numerical Markov chain” for the probability 
density on the phase space. By using this method one gets 
a very good impression of the time evolution of the density 
function. Resonance structures on the phase space can be 
made easily visible. Besides, the algorithm is by 2-3 orders 
of magnitude faster than direct tracking methods. 
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