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Abstract 

We consider the statistical nature of the stopband set up 
in the vicinity of a half-integer tune when a linear lat- 
tice is subjected to quadrupole errors distributed accord- 
ing to gaussians. The probability density function of the 
stopband, treated as a complex number, is found to be 
a correlated bivariate gaussian in the real and imaginary 
parts, The mean magnitude of the stopband is calculated 
in terms of the complete elliptic integral of the first kind, 
and the conditional probability density of its magnitude 
is obtained in closed form. A number of limiting condi- 
tions are studied. Finally, we estimate the requirements 
on a correction system for neutralizing the stophand with 
a given probability of success. 

I. L’ITRODUCTION: PHYSICS 

Consider a linear lattice subjected to small quadrupole 
errors. Fig. l(a) displays the eigenvalues of the one- 
dimensional transfer matrix in the complex plane [l]. If the 
unperturbed tune v lies close to a half-integer, the eigen- 
values e* @, p = 2av, will lie on either side of the negative 
real axis, as shown. The influence of the quadrupole errors 
will be either (i) to rotate the eigenvalues away from the 
negative real axis, or (ii) toward it. If the effect is the lat- 
ter, then as the strength of the perturbation increases, the 
eigenvalues will coincide on the negative real axis at some 
point. At this stage, further increasing the strength of the 
perturbation will either (i) move the eigenvalues past each 
other on the unit circle, or (ii) cause them to move onto 
the real axis, thereby making the lattice unstable. Lattice 
configurations corresponding to these two possibilities are 
displayed in Figs. l(b) and l(c), where we assume that the 
unperturbed lattice has a superperiod of two, and the per- 
turbing quadrupoles, of equal strength, to be separated by 
a superperiod. In the first case, Fig. l(b), the eigenval- 
ues would rearrange themselves on the unit circle. In the 
second case, Fig. l(c), the eigenvalues would move onto 
the real axis if the perturbation is sufficiently strong. It is 
customary to attribute the resulting instability to the ha/f- 
rnteger stopband. Note that there is no stopband for the 
perturbed lattice, in the sense that the tune must reach the 
half-integer before the lattice becomes unstable [3]. One 
can, however, speak of a stopband for the unperturbed lat- 
tice, Fig. 2. The tune shift caused by the perturbing 
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Figure 1: (a) Eigenvalues of one-dimensional transfer matrix near half- 
integer tune. (b) Stable. and (c) possibly unstable lattice configurations 
Neal half -integer with perturbtng quadntpoles separated by a superperiod. 
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Figure 2: The half-integer stopband as seen by tbe unperturbed lattice. 

quadrupoles in Fig. l(c) is 

tuneshiftxbvx [l-/m], (1) 

where Av, called the stopband halfwidth, is [2] 

ds &(s)p(s) ei(zWfps’R) , (2) 

and 

Q(s), the distribution of quadrupole errors, is the gradient 
error normalized by the nominal rigidity, p the 2uth har- 
monic, s the longitudinal coordinate, and R the average 
machine radius. Lattice functions in (2) correspond to the 
unperturbed lattice. In this view, the unperturbed tune 
must lie outside the shaded region set up by the perturb- 
ing quadrupoles, i.e., 6~ 2 Au. or the tune shift, given by 
(1) becomes complex, and the lattice becomes unstable. 
Hence, the shaded region about the half-integer is referred 
to as a stopband. 
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II. STATISTICS (X) = (Y) = 0, 

The half-integer stopband Av is the magnitude ofthe com- 
plex integral in (2), which we denote by Av,. The only 

(X2) = c c; <;, (Y’) = c d2, rk”, 
k k 

statistical element which appears in (2) is the factor of 
Q(S), the distribution of quadrupole errors in the lattice (XY)= 1 ckdk<;. 

elements. If p(s) varies slowly in the lattice elements. we k 

can make the approximation From (6) we see that if (-UY) = 0, X and Y become 

Au, x & T QkPkek et(2Wk+prxlR), 
uncorrelated gaussian random variables. 

(3) . The average of ~/m z r works out to be 

where the index k runs over the lattice elements, with & (F) = (;)+ [u&T: - (XY)ji P+(C), (7) 
the length of the k th element. Given that Qk is a gaussian 
random variable with zero mean and RMS variation of ok, where 
we are required to compute the mean and variance of Av = 
lAV<l. 

C= 
u; + u$ 

2Ju$ CT; - (xY)z- 
(8) 

We recast the problem in more abstract form. Let Z = 
(X, Y) be a complex number made up as PA is the Legendre function of index half[4]. It is easily 

established that <, the argument of Pi, is greater than or 

x -xCkdk, Y =xdtxk, (4) 
equal to 1. For values of C 2 1, P+ can be expressed as 

k k 

where cl,...,c,, dl, , d, are real constants, and P+(C) = g [c + dFq + E(m), 

I,, , 2, are independent gaussian random variables with 
where 

< Xk >= 0, < x; >= c: 

We are required to compute 

(/w), and (X2+Y2}. is a complet,e elliptic integral of the first kind [4]. Combin- 

We state without proof a lemma used to calculate the 
ing these results, we obtain 

joint PDF of X and Y: 
. Let z,, , z,, be independent random variables with (d = &Gz f(C)> (9) 

PDF’s pl, ,p,, respectively. Let X, Y be functions of where 
the independent variables, or 

x = F(Xl,. ,xn). Y = G(Xl,. .,x,). f(C) = [; (1+ di-7)]i E(m). 

If P(X, Y) denotes the joint PDF of X and Y. then 
The average of r2 can be obtained directly from (4) and 

P(X, Y) = 
J 

dzl...dz,pl x . ..p.cS(X-F)b(Y-G) (5) 
(r”) = (x2 + Y”) = u; + u; E 2. (10) 

where S denotes the Dirac delta function. In other words, n From the properties [4] of E(m) we obtain 
the joint PDF of X,Y is the average over ~1,, ,z, of 
6(X-F(xi ,._., tn))x6(Y-G(x ,,,,., x,,)), 0.8~ < (r) 5 0.9a. (11) 
. The joint PDF of X and Y in (4), works to be A simple and robust approximation is thus obtained 

P(X, Y) = 
1 (4 x u. (12) 

X 
2lr u; CT;- < XY >2 Also, from (11) we have 

exp - 1 
x20; $ Y%$ - 2XY < XY > 1 0.19 c2 < vat(r) < 0.36 IJ’. 

2(u~+- < XY >2) ’ 

(6) 
n The significance of the variable C, defined in (8), requires 
comment. The smallest value (; can have is unity. It ob- 

where tains when < XY > = 0 and 0~ = fly, z.e., when X and 
Y are uncorrelated and have the same variance. However. 

u; z (X2) - (X)2, a; 3 (Y2) - (Y)2- a value of ( larger than unity does not necessarily signify 
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Figure 3. Conditional probability density function of the Figure 4. Probabilit,y cd finding T between 0 and some 
magnitude of the stopband, for < = 1, C = 2, and C + LQ. prescribed limit,, for C = 1 and < - m. For intermediate 

values of <, the curve will lie within the envelope defined 

an increasing degree of correlation. This can be seen from above. 

(6), which requires only that < XY > = 0 for X and Y to 
be uncorrelated variables, in which case This is a “half” gaussian, as can be seen in Fig. 3. Since 

<+; (z+z). 
C - 03 represents (i) the case of perfectly correlated vari- 
ables, or (ii) the case when the individual variances of X 
and Y are grossly different, we expect r to be determined 

Accordingly, if bx # gy, (’ will be greater than unity, and by a single variable. In this case, the resulting distribution 
will become large if cx < Q, or vice versa. Another should remain gaussian, except that it must be positive. 
way for C to become larger than unity is when X and Y Hence, a half-gaussian. For intermediate values of Cz the 
are correlated, which requires < XY > # 0. The degree of peak of the PDF moves closer t,o the origin, and the tail 
correlation between X and Y is measured by how close the decays more rapidly, i.e., it, approaches the half-gaussian 
value of 1 < XY > 1 comes to 0~ (JY. For example, if the case. 
constants ~1,. (c, and dl, , d, in (4) are identical, then . The probability 
X is identical to Y, which represents perfect correlation. In 
this case one obtains 0~ by = < XY >. This is sufficient P(T) = 
t,o make the value of C -+ W, as in the case of uncorrelated .i 

r 
di; P(T) 

0 

variables with grossly different variances. of finding T between 0 and an arbitrary multiple of (T up 
. The conditional probability density function P(T) of the to 3a is shown in Fig. 4 for the limiting values of i = 1 
magnitude of the stopband r is and C + co. Probability curves for intermediate values of 

,,,,=2~ex,(-~)~~(~~~). (13) 

C will lie within the envelope defined by the limiting cases. 
n Finally, we illustrate the use of these results. Say we 
would like to design a correction system for the stopband 

Fig. 3 displays UP as a function of T for three different with a 0.95 probability of being sufficiently strong. Fig. 4 

values of C. tells us that the correction system must have a driving 

H The limiting cases C = 1 and < - ix1 can bc worked term (2) equal to 1.7~ for C = 1, and 2.0~ for < = 130. d 

out explicitly, and provide some insight into the behavior and C would have to be computed from the correspondence 

of P(r) as a function of C, In the first case, C = 1, one between (3) and (4), and knowledge of the machine lattice 

obtains from (13) and its error distribution. 

P(T) = 2>exp -J$ 
( 1 
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