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Abstract 

In an electron machine the adjustment of the first or- 
der derivatives of the tunes with respect to momentum is 
important to counteract the dipole mode head-tail insta- 
bility. In the case where low-p insertions are included in 
the lattice, this first order correction is not sufficient be- 
cause important higher order tune derivatives appear. The 
associated strong quadratic variation of the tunes with mo- 
mentum, results in a linear betatron instability for a small 
number of standard deviations in energy. This makes the 
life-time unacceptably small. The origin of tune deriva- 
tives of order larger than one is explained. The principle 
of their correction is recalled. 

I. INTRODUCTION 

The chromaticity problem is approached here as a par- 
ticular case of a general treatment of gradient perturba- 
tions which had been developed for optimizing an imper- 
fect matching [l]. This treatment, which deals with a one- 
degree of freedom motion, will first be recalled. Then its 
application to the higher order chromaticity due to a low-/l 
insertion will be done. The compensation with sextupole 
families will then be shortly examined. These matters had 
been developed in a course given by the author [2]. The 
aim of this paper is to explain mote clearly the formula for 
Q” which is the key point of the treatment and to correct 
some minor mistakes. 

II. GLOBAL ESTIMATION OF A GRADIENT 

PERTURBATION 

We consider a perfect machine at the end of which the 
bet&con-functions have the values p and (1. By definition 
the betatron functions have also the values ,f9 and a at the 
beginning of the machine. 

We introduce in this machine a certain gradient pettur- 
bation. The effect of this perturbation can be computed 
exactly by means of the transforms ofp and Q through the 
perturbed machine, which are 0’ and (I~, and the associ- 
ated phase advance G* defined by : 

pt Yz J ’ ds 

Opt 
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These quantities are indeed enough to obtain the per- 
turbed one turn matrix [3], the elements of which are: 

ml1 = \I $2 cos p’ + Q sin p’) 

ml2 = @sinpt 

7Ql = & (( 1 + cuxt) sin p* + (~9 - cc) cos pt)) 

m2a = 
T 

j$( cos p* - at sin p’) 

It is important to note that ,@ and ot are not true Twiss- 
functions : they have the same meaning as Twiss-functions 
in a transfer line. The true p-function p’ at the end of 
the perturbed machine can be obtained from the second 
element of the first line of this matCx : 

p’ = &@sinpLf/sinp* 

The new tune p’ can be computed from the trace of the 
perturbed matrix : 

ZCOSP* = (fi+ #) C0S/4t+(o~-at/jj sinpi 

(2) 
Putting : 

e = arctan 
y&q$J3:a--OLy3 

&+Jg Pi-P’ 

We can transform equation (2) into : 

cos p’ = cos(pt + e) x 

,l+a(~-~)'+a(~~-~'~)' (3) 

In order to obtain this expression, there is a trick consist- 
ing of adding 4 to the sum of the squares of the coefficients 
of the trigonometric functions in equation (2), so that the 
sign plus in the first one can be changed to minus. As the 
term under the square root is always larger than 1, there 
are values of p1 + @ for which cos p* is larger than 1, even if 
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the unperturbed cos p is smaller than 1 : the gradient pet- 
turbation has opened ‘gradient stopbands’. An illustration 
of this effect can be found in ref [I]. 

It is worth noting that the expression under the square 
root can be used as a measure of mismatch when trying to 
match an insertion. In the case of an imperfect matching, 
minimizing this expression guarantees that the stopbands 
associated with the mismatch have the minimum width. 

III. CHROMATIC PERTURBATION 

We expand p’ and p* in power series of the relative 
momentum deviation 6. ~1’ is then 2rQ(6), Q being the 
tune of the machine. which is a function of the momentum 
deviation. pt = p + //‘6 + p62 + . 

p* = )A + p’d + $dv2 $ . . . . . 

We expand also p’ and oL : 

p’=p+p’a+ . . . . a’=cr+a’6+... 

0 and a being the on-momentum values. o’ and p’ are 
not the derivatives of a and p with respect to momentum, 
but the derivative of the transforms of the on-momentum 
functions through the machine. The computation of this 
p’ can be found in [4]. For instance the contribution to this 
derivative of a thin quadrupole of length 1 and normalized 
gradient k is : 

p’ = -k& sin 2[~ - po] 
P 

(4) 

where the unlabeled optics parameters refer to the point 
of longitudinal coordinate s where the derivative is com- 
puted and the quantities labeled 0 refer to the quadrupole 
location. Taking the derivative of 4 with respect to s : 

a$ - a’ = kl& co3 2[p - po] (5) 

Now we carry on with the identification of the terms with 
the same power of 6in the LHS and RHS of equation (3) 
after expansions in power of 6. The terms in 6 give: 

p’ = fit’ + $ [CQ -Pa’] 

~1’ is the first derivative of the tune of the perturbed ma- 
chine multiplied by 2x , pt’ is obtained from 1. 

Then, identifying the terms in 6’, we obtain : 

- ;cotp [($,‘+ ($-o’)‘] (6) 

In this expression the last term is much larger than the 
other ones as long as the first derivative pt’ is some units. 
It describes the effect of the first order off-momentum mis- 
match of the p-function due to the low-p insertion. The 
numerical support of these statements is given below. 

Identifying the terms in b3 leads to a similar result. The 
large term is still there, as well as its derivative with respect 
to momentum. 

Iv. Q” DUE TO A LOW-p INSERTION 

We consider the case of a machine composed of ti, su- 
perperiods with one symmetric low+3 insertion per super- 
period. All machine quadrupoles contribute to the chro- 
matic effects but there is at least a strong one, close to the 
crossing point, which has a dominant effect on the second 
order tune derivative. In order to give an idea of the OI- 

der of magnitude of this effect, we can consider the case of 
LEP under physics conditions, in the vertical plane. The 
p-value at the interaction point p’ is 5cm. The closest 
quadrupole is at 3.7m, it has a length of 2m and a strength 
k of O.l64m-‘. The p-value at the quadrupole centre is 
about 400m, and the expression k@?o has a value of about 
130. For the other lattice quadrupoles of length 2m, k is 
always below 0.03 and the p-value below 140m, resulting 
in klpo smaller than 8. In equation 6 all contributions add- 
up linearly with phase terms as given by formulae 4 and 
5, so that the effect of the low-p quadrupole dominates. 

Keeping only the effect of the off-momentum mismatch 
due to two low-p quadrupoles in phase (they are * apart) 
per insertion, formula 6 takes the form : 

hf* 2*Q Q” 2 ---(kIp)‘cot r 
I 

Q being the tune of the machine, Q” its second derivative 
with respect to momentum and N, the number of super- 
periods. 

The cotangent of the tune per superperiod is an impor- 
tant factor. If it is close to a half integer, the cotangent 
becomes very large. This is precisely a condition favor- 
able for the beam-beam effect, because of the associated 
reduction of the beam size at the crossing point. 

With the above mentioned LEP parameters of the low- 
p quadrupoles, Q” given by formula 7 is 3.3~10’. A 
tune shift of -0.2 is enough to produce a betatron insta- 
bility since the fractional part of the vertical tune is 0.2. 
This tune shift is obtained with a momentum deviation 
of 3.5x 10-a with this value of Q”. The actual variation 
of the tunes with momentum of LEP with two sextupole 
families, for the physics optics, is shown on fig 1. We ob- 
serve that the betatron instability occurs indeed at about 
3x10-a in the vertical plane. This shows the dominant 
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effect of the off-momentum mismatch on the second order 
tune derivative for this plane. In the horizontal plane the 
variation of the tune with momentum has a much smaller 
curvature. This is because the kl@ value is smaller than 
that for the vertical plane by a factor of about five. A 
similar situation occurs in the vertical plane for the injec- 
tion optics where p, * is reduced by a factor three, which 
reduces the contribution to Q” by one order of magnitude. 

If the tune per superperiod is close to a quarter integer 
module one half, the cotangent becomes small and tunes 

satisfying this condition avoid taking care for the compen- 
sation. This is for instance what has been done to test 
LEP with 90” cells. Choosing the tunes: 

Qh = 91.30 Qv = 97.20 

makes it possible correct the chromaticity with two sex- 
tupole families for a p’ of 5cm (51, one oIder of magnitude 
being gained on cot 2. 

The machine parameters making kZ@ large are mainly 
p’ and the distance L between the crossing point and the 
centre of the low-fl quadrupole. klp is determined by the 
necessity of changing the sign of the derivative of p after 
the low-p quadrupole. For a thin lens model, we have : 

kl@ = -2a = 2LIp 

We can check for the LEP parameters given above that 
this expression gives 190, which is quite close to the actual 
value of 130. Putting this expression in ‘7, we see that Q” 
scales with (L/p*)‘. 

V. COMPENSATION OF THE OFF-MOMENTUM 
MISMATCH 

An obvious solution is to use sextupoles to match the 
first derivative of the p-function. As there are already 
such elements to adjust the first derivative of the tunes, 
the best procedure is to split them into families in order to 
make “off-momentum cells” which match the first deriva- 
tive of the tune with respect to momentum. A variety of 
such arrangements has been tried. A review can be found 
in ref [2]. The experience shows that the best procedure 
consists in splitting the sextupoles into families as regular 
as possible with a phase advance per cell close to a simple 
fraction of r. This phase constraint guarantees both that 
the correction is possible, as two sextupoles separated by 
a K phase advance act in phase for the correction of p 
(see equations 4 and 5), and that the non-linear transverse 
oscillations have the least detrimental effect. 

VI. CONCLUSION 

Increasing a lepton storage ring luminosity by decreas- 
ing the value of the p-function at the crossing point is lim- 
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Figure 1: Variation of the tunes with relative momen- 
tum deviation for the LEP optics used in 1992. Qxz94.3, 
Qy=100.2 on the central orbit. There are four superpe- 
riods with one low-p insertion per superperiod. The first 
derivatives of the tunes have been set to about 2.5 with 
two sextupole families 

ited by the non-linear chromaticity produced by the low-p 
insertion. The essential part of this effect is due to the 
second tune derivative with respect to momentum. When 
p’ is decreased below a certain threshold, this contribution 
to the non-linear chromaticity has to be compensated by 
splitting the sextupoles into families. 
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