
Symmetric Integrable-Polynomial Factorization for 
Symplectic One-turn-Map Tracking 

Jicong Shi’ 
Department of Physics, University of Houston, Houston, TX 77204-5506, USA 

Yiton T. Yan 
SSC Laboratory’, 2550 Beckleymeade Ave., Dallas, TX 75237, USA 

Abstract 
It was found that any homogeneous polynomial can be 

written as a sum of integrable polynomials of the same 
degree by which Lie transformations can be evaluated ex- 
actly. By utilizing symplectic integrators, an integrable- 
polynomial factorization is developed to convert a sym- 
plectic map in the form of Dragt-Finn factorization into a 
product of Lie transformations associated with integrable 
polynomials. A small number of factorization bases of in- 
tegrable polynomials enables one to use high-order sym- 
plectic integrators so that the high-order spurious terms 
can be greatly suppressed. A symplectic map can thus be 
evaluated with desired accuracy. 

I. INTRODUCTION 

In large storage rings, high-intensity beams are required 
to circulate for many hours in the presence of nonlinear 
perturbations of multipole errors in magnets. Extensive 
computer simulations are thus necessary to investigate the 
long-term stability of beams. The conventional approach 
in which trajectories of particles are followed element by 
element through accelerator structures is, however, very 
slow in these situations. A substantial computational as 
well as conceptual simplification is to study the stability 
of particles by using one-turn maps. 

While finding a closed analytical form of a one-turn map 
is impossible for a large-storage ring with thousands of ele- 
ments, a truncated Taylor expansion of one-turn map-the 
Taylor map-can be easily obtained. Even though some 
successes have been reported using the Taylor maps, the 
truncation inevitably violates the symplectic nature of sys- 
tems and consequently leads to spurious effects if the maps 
are used to study the long-term stability [l]. A reliable 
long-term tracking study with the Taylor map is therefore 
possible only if its nonsymplecticity effect can be elimi- 
nated without much reduction in the tracking speed. 

In order to eliminate the nonsymplecticity, the Taylor 
map is usually converted into Lie transformations with 
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Dragt-Finn factorization [2]. A map in the form of Lie 
transformations is guaranteed to be symplectic, but gen- 
erally cannot be used for tracking directly because evalu- 
ating a nonlinear map in such a form is equivalent to solv- 
ing nonlinear Hamiltonian systems which cannot be done 
in general. Several methods, such as jolt factorization [3] 
and monomial factorization [4], have been proposed to deal 
with this difficulty by converting the Lie transformation 
from its general the form into special forms that can be 
evaluated directly. While these methods seem promising, 
their applications lead to considerable theoretical and com- 
putational complexities, chief of which is unpredictability 
of high-order spurious terms that may lead to a less than 
accurate evaluation of the map. 

Since a general Lie transformation corresponds to anon- 
integrable system that cannot be evaluated exactly, the 
challenge here is how to evaluate a Lie transformation ap- 
proximately without violating the symplecticity and with 
a controllable accuracy. One way is to divide the noninte- 
grable system into subsystems that are integrable individu- 
ally. The set of subsystems of minimum number is the most 
promising one to serve as the zeroth-order approximation 
because it would generate less high-order error and be a 
better starting point for higher-order treatments. For Lie 
transformations associated with homogeneous polynomi- 
als, we have shown [5] that any polynomial can be written 
as a sum of integrable polynomials by which Lie trans- 
formations can be evaluated exactly. Since the number 
of integrable polynomials can be much smaller than the 
number of monomials, a factorization baaed on the inte- 
grable polynomials will have many fewer terms so that a 
higher order factorization becomes practical. In order to 
achieve an optimization between a desired accuracy and a 
fast tracking speed, we have proposed a factorization on 
the integrable polynomials with symplectic integrators [5]. 
The advantage of the factorization with symplectic inte- 
grators is the suppression of high-order spurious terms to 
a desired accuracy [6-81. 

II. INTEGRABLE POLYNOMIAL IN 
LIE TRANSFORMATION 

A polynomial in 2. is called an integrable polynomial if 
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its associated Hamiltonian system is integrable, i.e., its as- 
sociated Lie transformation can be evaluated exactly. Let 
{s!k’]k = 1,2, _., iv,} denote a set of integrable polynomi- 
als of degree i. In what follows. we shall show that any 
polynomial in Z can be expressed as a sum of integrable 
polynomials of the same degree, i.e., 

f, (4 = c a(~)zp’p~‘~~“p~“z~“p~6 = %gi’), (I) 
(Cfl,)=t k=l 

where fi is any homogeneous polynomial of degree i in 
phase-space vector z’= (zi,~r,zZ,ps,ts,ps) and a(Z)s are 
constant coefficients. After factorizing it as a product of 
Lie transformations associated with integrable polynomi- 
als, exp (: fi :) z’ can he therefore evaluated directly. Since 
the minimum number of integrable polynomials ;V, is much 
smaller than the number of monomials, the accuracy of fac- 
torization with {gi”‘} as bases can be carried to a desired 
order with the use of symplectic integrators. 

Homogeneous polynomials of degree 3 in &variables con- 
sist of 56 monomials, which can be grouped under 8 inte- 
grable polynomials of degree 3, {gp’]n = 1,2, . . . . 8): 

(‘1 _ Q3 - (1) 3 Cl Zl + c2 (l)& + c$‘)z; 

+c!‘)& + pr; + &p3 
(2) _ 

93 - pp: + $)p?q + cpp; 

+4%2 + pp; + $)p& 
(z+i) _ 

93 - tih~+“)(tj,Pj,zk,pk)! 

SF+‘) = Pihg+‘)(zj,pj,Zk.pk), 

(2) 

(3) 

(4) 

(5) 

where (i, j, k) goes over all cyclic permutations of (1,2,3), 
hp’s are homogeneous polynomials of degree 2 in 4. 
variables, and ck’ is the coefficient of the correspond- 
ing monomial in fs It should be noted that the decom- 
position of fz into integrable polynomials is not unique. 

(Ii 
93 and gy’ can be further combined into a single in- 
tegrable polynomial since the Hamiltonian system with 
II = -(g$“+gp’) is integrable. We chose two separate in- 
t,egrable polynomials instead of the combined one because 
the solution for the later cannot be written in a closed form 
and directly used in tracking. 

The Lie transformations associated with int,egrahlr poly- 
nomials can be converted into simple iterations [5]: 

e ss” Zi = 2, 

1 + c(!)z. 1 2, 1 

e gi” p, = _ Cc(21!1zi + c$:)Pi)(C$:)Zi + 1)3 + c$tliZi 
t 

$‘( 1 + C$?)Z.) 
1 (7) 

t 5 

(2) 
es, .z$ = (c$?l,Pi + C$‘pi)(C$)pj - 1)3 - C~~ipi, 

c$‘( 1 - cs’pi) 
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e ss” p, = p, 

1 - Cg’pi ’ 
(‘)+I) 

e 93 ii = li, (10) 

c gs”” PE = Pi+h(22+i)(tj,pj,Ik.Pk), (11) 
Is+,) 
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where (i, j, k) goes over all cyclic permmations of (I. 2, 3). 
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where superscript T denotes the transpose and T is a 4- 
dimensional antisymmetric matrix: 

/o -1 0 0 \ r=\i i KJJ. (17) 
Similarly, 126, 252, and 462 monomials of homogeneous 

polynomials of degree 4, 5. and 6 in &variables can be 
grouped into 20, 42, and 79 integrable polynomials of de-- 
gree 4, 5, and 6. respectively [5]. 

III. SYMMETRIC 
INTEGRABLE-POLYNOMIAL 

FACTORIZATION 

With integrable polynomials, a symplectic map in the 
form of the Drag&Finn factorization can be rewritten as 

c’,(T) = Rflexp $J : g!“’ : t’, 
i 1 

(18) 
853 ?I=, 

where R denotes the linear transformation and iy, is the 
number of integrable polynomials of degree i. By means of 
Campbell-Baker-Hausdorff (CBH) formula [2], one can, in 
principle, convert the Lie transformation associated with a 
sum of integrable polynomials into a product of Lie trans- 
formations associated with integrable polynomials Since 
those integrable Lie transformations of the same order are, 
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in general, not commutable, such nonsymmetric separa- 
tion will cause spurious errors on the next and higher or- 
ders. We therefore propose that symplectic integrators [6- 
8] be properly used to achieve symmetric seperation of in- 
tegrable Lie transformations so that spurious errors can be 
as much suppressed as desired. 

For i 2 5, since (: IJ$“” : s,‘~~‘) is a homogenous poly- 
nomial with degree higher than 7. a factorization with up 
to the 7th order is easily obtained by directly using the 
first-order integrator, 

exp c : g!“’ : = 
( 1 

fj exp (: gin’ :) + f(2i - 2), (19) 
fl=l 

where i > 5 and c(2i - 2) represents the truncated terms, 
which are homogeneous polynomial with degree higher 
than 2i - 3. For i = 5 and 6, the lowest-order truncated 
term is a homogeneous polynomial of degree 8 and 10, re- 
spectively. 

For homogeneous polynomials of degree 4, we use the 
2nd.order integrator and obtain a 7th.order symplectic 
map 

where (7~1, n2! ..,, ~20) is any permutation of (1, 2 ,..., 20). 
The lowest-order truncated term in Eq. (20) is a homoge- 
neous polynomial of degree 8. 

In order to obtain a Gth-order symplectic map, we have 
to use the 4th-order integrator [6-81 to factorize exp(: ,fs :), 
which yields a product of 7 3 = 343 Lie transformations 
associated with integrable polynomials: 

dl=d7= ’ 
dz ds 

1 
(21) 

2(2 _ 21/3) ’ = = 2 - 21/3 1 
- d3 (2‘4 = d5 = -- 1 2113 

2(2 - 2113) ’ dz, 
= - -2113 

2 - 2113 

Dijk is an integrable polynomial of degree 3 that can be 
chosen according to following pattern, 

j = even 
{ 

k = even, Dijk = c~pl’ 
k = odd, Dijr; = g$“” 

i = even 

j = odd 
k = even, Dijk = gg3) 
k = odd, DijE = s~~’ 

where (711, n2, n3, n4, Rs, ns, n7, na) iS any permutation of 
the first eight digits, (1, 2, 3, 4, 5, 6, 7, 8). The lowest- 
order truncated term in Eq. (21) consists of homogeneous 
polynomials of degree 7. 

IV. CONCLUSION 

We have shown that any polynomial can be written 
as a sum of integrable polynomials of the same degree. 
The number of optimized integrable polynomials is much 
smaller than the number of monomials. For homogeneous 
polynomials of degree 3 to 6, we were able to group 56, 126, 
252, and 462 monomials into 8, 20, 42, and 79 integrable 
polynomials, respectively. All Lie transformations asso- 
ciated with these integrable polynomials were translated 
into simple iterations that can be directly used in tracking. 
By utilizing the symmetric symplectic-integrators, we have 
developed a factorization scheme based on the integrable 
polynomials in which Lie transformations associated with 
homogeneous polynomials are converted into a product of 
Lie transformations associated with integrable polynomi- 
als. A much smaller number of integrable polynomials not 
only serves a more accurate set of factorization bases but 
also enables us to use high-order factorization schemes so 
that the truncation error can be greatly suppressed. The 
map in the form of Lie transformations associated with in- 
tegrable polynomials could therefore be a reliable model 
for studying the long-term behavior of symplectic systems 
in the phase space region of interest. 
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