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Abstract 
We present an optimized iterative formulation for di- 

rectly transforming a Taylor map of a symplectic system 
into a Deprit-type Lie transformation, which is a compo- 
sition of a linear transfer matrix and a single Lie transfor- 
mation, to an arbitrary order. 

For a sympletic system, a one-turn map can be written 
as a composition of a linear transfer matrix and a nonlinear 
Taylor map M of the form [l] 

Ma= z+ uz(zq + .!I+) + (1) 

which can be converted order-by-order into Lie transfor- 
mations in the form of Dragt-Finn factorization [2]: 

Mz’= &~) e f,(Z) - . ..z , (2) 

where t represents the canonical phase-space coordinates: 
fi(q and 6, are the homogeneous polynomial and the YRC- 
torial homogeneous polynomial of degree i, respectively; 
: f%(z) : is the Lie operator associated with the function 
,fi(?), which is defined by the Poisson bracket operation 
: f,(y) : i = [fi(zJ, 4. By means of the Campbell-Baker- 
Hausdorff (CBH) formula [2], the product of Lie transfor- 
mations in Eq. (2) can be combined to form a single Lie 
transformation: 

where 

luz’ = ,.s(O; , (3) 

s(q = m(r;? + s4(q + .., , (4) 

and gi(z’) is a homogeneous polynomial of order i. Note 
that except gs(q = fs(,?), gi(zi) is generally different from 
fi(zT. Since obtaining a single Lie transformation from 
Eq. (2) via CBH formula is pretty tedious and one may 
need such a single Lie transformation under certain cir- 
cumstances [3], we have worked out an optimized algorith- 
mic formulation for obtaining this single Lie transforma.. 
Lion directly from the Taylor map of Eq. (1) [4], It should 

‘Supported by TNRLC underaward FCFY9221 and the U.S. De- 
partment of Energy under grant DE-FG05.87ER40374. 

20perated by the Universities Research Association, Inc., for 
the U.S. Department of Energy under Contract No. DE-AC35- 
89ER40486. 

be noted that we are not claiming that we are the first 
to try such a direct single Lie transformation. It is very 
likely that others may have different approach. The pur- 
pose of this note is to share with colleagues the simple and 
optimized algorithm we have obtained. The algorithm is 
described as follows. 

Let us define, for each order n, a set of auxiliary vet- 
tor homogeneous polynomials of degree n, { I$,$“‘) (;3, m = 
1,2, . . . . n}. gn+r(z?‘) for n = 2, 3. are then obtained 
through order-by-order iteration given by the following 
steps: 

Snt1 (?I = - -&iwp (4, 
where 

and for n 2 3, 

@)(1) = I;i2(?), (6) 

n--l 
Iqqq = On(F) - c Lq”‘(~). (7) 

n2=2 

where J?‘,$“‘) for 2 5 m 5 n is given by 

Lqy)(,3 = L ne : gjtz(l) : w;:;“(z). m i=, (8) 

In Eq. (5), S is the antisymmetric matrix [1] and the 
superscript T denotes the transpose. 

This optimized algorithm is planned to be implemented 
in Zlib [5], a differential Lie algebraic numerical library. 
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