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Abstract 
In the alternating phase focusing linac with a symmetric 
synchronous phase sequence, the lowest order resonance (a, - 
2q = 0) due to the synchrobetatron coupling occurs naturally, 
causing significant emittance transfer between the IongitudinaJ 
and transverse motions. A model for the coupled motion 
including the amplitude dependent tune shift is proposed. 
Two approximate invariants are derived. Results from 
computer simulations of a bunched beam yield good 
agreement with the formula for the invariant derived from the 
theory. We provide, moreover, a way to move the parameters 
away from the lowest order resonance, and thus lower the 
emittance exchange due to the resonance. 

I. Introduction 
It is well known that longitudinal stability can be obtained in a 
non-relativistic drift tube accelerator by traversing each gap as 
the rf accelerating field rises. However, the rising accelerating 
field leads to a transverse defocusing force which is usually 
overcome by the use of magnetic focusing elements inside the 
drift tubes. Alternating the sign of the synchronous phase is a 
way to provide both longitudinal and transverse focusing 
without the use of focusing magnets. Exploration of this idea 
[I] shows that the stable longitudinal phase space area which 
is related to the current carrying capacity is smaller than for 
the Alvarez type DTL. In an earlier paper [2], we tested the 
current carrying capacity of an APF linac by adapting the 
simulation code PARMILA, which includes space charge, to 
the APF structure. We found, however, that significant 
emittance growth arose even in a low intensity beam for 
which phase space matching was approximately achieved. In 
the present paper, we show that the emittance growth for a 
matched beam without space charge is a response to the 
lowest order resonance (a, = 20,) which naturally occurs in 
symmetric APF [3]. 
In the following study, we assume a synchronous phase 
configuration of the periodic length N@I where the 
synchronous phase pattern is 

eNi, =-PO-@,, i= 1.2, . . ..W2. 
~~i,=-t&,+~,. i=N/2+1,...,N. 

Here, both & and I$, are positive, with r$,, representing a small 
asymmetric offset to accompany the large alternating 9,. The 
desired synchronous phase configuration can be obtained by 
choosing drift tube lengths which alternate appropriately. In 
previous work [2], where no synchrobetatron coupling was 
considered, we concluded that, to achieve simultaneous beam 
matching in both directions while still keeping the phase 
acceptance and transverse beam size constant, we must 
separately keep I$,,, Kcosrjr, KNsin$, continuous across any 
transition, where K is a dimensionless parameter defined by 
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Km 2xZeEe~/Amcz~~. We then have to increase the 
average accelerating field EeT as py 3 to keep K as well as &,, 
$1 and N constant. Another possibility is to modulate the 
synchronous phase $1 continuously such that the effective N 
increases continuously as pf, keeping $0 and EeT constant . 
Here we study the fust scheme only. 

II. Analysis and Simulation 
We assume that the change of by is small over a focusing 
period and adopt the E,T-ramping scheme which makes K 
constant. For an APF structure, the equations for the 
transverse and longitudinal motions can be derived by a 
Fourier expansion of the step functions [I]. Let us consider 
the smoothed version of the equations of motion containing 
the coupling terms 0(x*) and O(xw), and the terms O(v2, and 
O$ which yield the longitudinal amplitude dependent tune 

XN + q2x = -a,2xyl ) (1.1) 
k2 yr” + dc2yi = Ob2y12 + cJd2)13 - +oc2x2, (1.2) 

‘ 

where w = +$,, k, = Zx/pyh, ‘c = s/NJ& ’ = dldr. Here 

2-B“ - - CS,“, 2 Qd ---+-I [ 1 3 4x2 n=r n 

(2.6) 

The dimensionless parameters in Fqs. (2) are 

B, =~,&in4s(ij. I-1 

B, =~,~cos~.(i,. 1 1 

C,,, = KN gcos2nrrr, sinotii, 
2 N 

I? 1 [ zsin2nx7, 
+ sin 41~~) 1 

2 
, 
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fcos2nrRi cosr&, 
2 

C,, = KN 
i=l 1 [ + ~sin2ntt7,cos~,, 1 

2 
, 

where the rr coordinate is 
i-l 

rl=O, r,(i+l)=~.(2rc+0,(j+,,-g,(j,)12RN. 
j=l 

The nonlinear coupling between x and w motions can easily 
be seen here. The second order solutions for Eqs. (I) include 
the resonance terms, containing the factor A- = 20, - u( in 
tbe denominator. When +e = 0, we have B, = 0 and thus h 
=O, because of Eqs. (2.1) and (2.2). Thus the resonance due to 
the synchrobetatron coupling, which will cause rapid 
emittance exchange, is expected to occur when a symmetric 
phase sequence is chosen. Other higher order resonances can 
also exist when taking the higher order coupling terms into 
account. However, the (2,l) difference resonance described 
above is the lowest order and the most severe one, as long as 
there is no troublesome sum resonance. 
Upon treating the coupling and nonlinear oscillation terms on 
the right hand sides of Eqs. (I) as the forcing terms that drive 
tbe linear oscillations close to resonance, we may try the 
solutions of Eqs. (I) similar to the solutions of the linear 
system, but with slowly varying amplitudes and phases. 
Specifically, we write 

x(r) = X(r) coS(O,? + a(r)), (3.1) 

Ye) =@W -@,r +P(O I (3.2) 
with the conditions: 

X’(T) = -o,X(z)sin(a,z + a(Q), (4.1) 
y’(r) = -a,Q(~)sin(a,r + B(r)). (4.2) 

The fist order derivatives of X(r), Q(r), a(r) and B(r) can be 
obtained by substituting Eqs. (3) into Eqs. (1) under the 
assumptions of Eqs. (4). and can be approximated by taking 
their averages over one cycle of rapid variation, according to 
the KBM (Krylov-Bogoliubov-Mitropolsky) method. The 
high frequency modes are averaged out and only the low 
frequency h part near resonance is kept. Implementation of 
the KBM averaging transforms the two second order 
equations into four first order equations, and two integrals of 
motion can then be derived. We relate the averaged maximum 
amplitudes X(r) and 0(r) to the normalized emittances for 
particle beams with uniform distributions in both the 
longitudinal and transverse directions: X’(r) = E.N)L lo, and 
0’(r) =~,k,kh/o,, where E, is the normalized transverse 
effective emittance in x-p, phase space, and E. is the 
normalized longitudinal effective emittance in z-p1 phase 
space. Here we define the effective emittance as four times of 
the rms emittancc for the upright ellipse and treat y = 1 as the 
non-relativistic approximation. The two adiabatic invariants 
E, and E2 thereby are 

E =o X2(r)/cr 2 +20,rD2(r)/ k 2. 2 1 t 
=N~(E./&~J.~), 

w c 
(5.1) 

where 
E, =A-J+BZJ2 /2-ni(l-J)~cosY, (5.2) 

J(r) = 20,rb2(r) / oc2kw2E, = 2Nk, / oG2E,, (6.1) 
Y(r) = A.7 +2a(r) +P(r), (6.2) 

‘1, = (k,m,’ /~Q,)+J,~E~ /2a,, 

where the term in ot,4 has been carried to 2nd order for 
consistency in obtaining the J dependence of the tune shift. 
Note that the second invariant E2 can be determined from the 
initial conditions of the variables J and Y at the injection point 
of a linac. and is derived with the assumption of constant B to 
treat the parameters q, and BZ as constant. The simulation 
results in Fig. I show the transfer of normalized rms emittance 
between the longitudinal and transverse motions and also 
confm the validity of Eq. (5.1). The saturation of emittance 
exchange, i.e., de-coupling of the coupled oscillation, is due to 
the effect of acceleration which reduces the coupling strength. 
A plot of COSY as a function of J gives a qualitative 
description of the behavior of the system. Fig. 2 shows an 
example of the configuration diagram for Eq.(5.2). The stable 
zone of the diagram shown is within the region -IScosYSl 
and OS.J<l. The coupled oscillations are bounded due to the 
fact that the fist invariant is the sum of square of amplitudes, 
which is, per se, the property of a difference resonance. In 
Fig. 2, all initial coupling phase angles Y(0) are employed 
equally from 0 to 2~ when considering the particle beam with 
a uniform distribution of amplitudes X and Y in the trace 
space. The rise or fall of an emittance oscillation at the 
beginning depends upon the initial amplitude J(0). 

1.8 
G I 4 (0) 

1.6 ,___-.. . . . . . . --,......,,.., . . . . .._.._. 6 ,__,,_,,_,,,,,,, 

., i~~~~~~:~~~~-:-::::::1:~~.~~~-.~~~.~~.~~~ f ........ _ ........ ...... ............ ......... -I 

0 20 40 60 80 

Cell Number 
Fig. 1 Simulation results for the emittance transfer between 
longitudinal and transverse motion, and the first invariant 
from Eq. (5.1). The parameters are K=0.556, N=4, @r = 70, $0 
= 0. lhe injection emittances are: &X = 0.5242 cm-mrad. ez = 
0.0758 cm-mrad. 
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Fig. 2 Configuration diagram for cos Y vs. J. 
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Fig. 3 Poincare mapping of J-Y space, when $,, = 0. 
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Fig. 4 Simulation results for the longitudinal emittance 
growth with different initial scaled emiuance J(O), where the 
system is on resonance. 

The existence of the first invariant enables us to easily reduce 
the four differential equations to two with the help of the 
function J: 

J’(s)= -ql(l-J(r))msinY(r), (7.1) 

Y’(r) = A- + qzJ(~) + tjl cosY(r). (7.2) 

It is worthwhile to note that the result of the second invariant 
can also be obtained by the Hamiltonian equations of motion, 
with J(T) and Y(r) treated as a pair of conjugate canonical 
variables. The Hamiltonian H(Y’.J) is then just identical to 
the second invariant E,. 
The phase space of the Hamiltonian flow for system (5.2) at 
resonance, i.e. when A- = 0, is plotted in Fig. 3. The two 
fixed points on the resonance manifold can be found via the 
conditions: J’ = 0 and Y’= 0. Numerically, the term 
involving the amplitude dependent tune-shift q2 contributes 
only as a small modification of the value of J at the fixed 
point. The fixed points of the system at resonance are then 
approximately equal to J = 1 / 3, Y = 0 and R . According to 
Eqs. (5) and (6), when J = l/3, the ratio of longitudinal and 
transverse emittances have a following relationship: 

E,/E,=(CJ./CS,)~/~ =1/4. 

Therefore, if we inject a beam with the emittance ratio E. /E. 
near l/4, such that the initial J is near l/3, which is close to the 
fixed point of tbe resonance Hamiltonian when Q,, = 0, the 
variation of J on average will then increase only a small 

amount, due to the asymmetric shape of phase space [cf. Fig. 
31, until it reaches equilibrium [cf. Fig. 41. For the particles 
with initial J smaller (larger) than ln. the average variation of 
J for particles with different phases will then tend to grow 
(decrease). Simulations of the bunched beam for different 
scaled emime ratio shown in Fig. 4 confii this prediction. 
The domain of resonance can be found from the stationary 
solution of Eqs. (7.2) when Y’= 0, Y=O or x and the 1)? term 

is neglect&IA-(band)( I 1q1(3J - l)/ 2fl. Therefore, when 

the initial J is not near l/3, the design of an APF linac requires 
as large a non-zero phase offset as possible such that the 
detuning A. is away from the resonance band, reducing the 
emittance exchange to as low a level as possible. Results of 
simulations for J(r)/J(O) with different +,, are shown in Fig. 5. 
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Fig. 5 Simulation results for the longitudinal emiuance 
growth with different phase offsets. 

We note that the constant-j3 ansatz is not physically realistic, 
since the acceleration rate is usually higher than the emittance 
exchange rate. When considering the acceleration, where the 
parameters Q, and q2 are 7 dependent, the second invariant & 
in Eq. (5.2) can no longer be achieved by integration of Eqs. 
(7.1) and (7.2). However, Figs. 2 and 3 can still give a 
qualitative description of the dynamics of synchrobetatron 
coupling. 

III. Summary 
The equations of coupled motion for an APF linac are 
truncated, smoothed and averaged. We have shown that in 
both the simulations and the analysis, the emittance exchange 
between the longitudinal and transverse motions due to the 
coupling resonance can be decreased by either choosing an 
emittances ratio such that the system is close to the fixed 
points of the resonance manifold; or by introducing a non-zero 
phase offset in the synchronous phase sequence of the APF 
linac. 
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