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Abstract An extension of the longitudinal thermal 
wave model, including both radiation damping and quan- 
tum excitation (stochastic effect) is presented here. We 
show that, in the presence of the RF potential well, the 
longitudinal dynamics is governed by a 1-D Schrijdinger- 
like equation for a complex wave function whose squared 
modulus gives the longitudinal bunch profile. Remarkably, 
the appropriate emittance scaling is naturally recovered, 
and the asymptotic equilibrium condition for the bunch 
length is found. These results open the possibility to ap- 
ply the thermal wave model, already tested for protons, in 
a more accurate way to electrons. 

1 Introduction 

In the study of charged particle beam dynamics for ac- 
celerators and plasma physics, a number of nonlinear and 
effects are relevant [l]. Due to the electromagnetic in- 
teractions between the particles and their image charges 
induced in the surroundings, these nonlinear effects also 
acquire collective nature [I]. This property is enhanced for 
very intense beams, which are employed in very high lumi- 
nosity colliders. In addition, radiation damping and quan- 
tum electromagnetic fluctuations (quantum excitations) 
are generally present in the beam longitudinal dynamics 
especially for electron bunches. 
Recently, a thermal wave model for charged particle beam 
dynamics has been formulated [2] and successfully applied 
to a number of linear and nonlinear problems in beam 
physics [3]-[7]. In this approach, the beam transverse (lon- 
gitudinal) dynamics is formulated in terms of a complex 
function, the so called beam wave function (bwf), whose 
squared modulus is proportional to the bunch density. 
This wave function satisfies a Schriidinger-like equation in 
which Planck’s constant is substituted with the transverse 
(longitudinal) bunch emittance [2],[7]. In particular, this 
model is capable of reproducing the main results of the 
conventional theory about transverse beam optics and dy- 
namics (in linear and nonlinear devices) [2]. Moreover, it 
represents a new approach to estimate the luminosity in 
particle accelerators 141, [5], as well as to study the self- 
consistent beam-plasma interaction [3]. Remarkably, this 
model, if applied to the longitudinal bunch dynamics, al- 
lows us to describe, in a simple way, the synchrotron mo- 

tion when both self-interaction and the radio frequency 
(RF) potential well are taken into account. In particular, 
the right conditions for the coherent instability in circular 
machines have been recovered [6],[7] and new interesting 
soliton-like solutions for the beam density have been dis- 
covered [6],[7]. 

In this paper we improve the thermal wave model for 
longitudinal bunch dynamics given in [6], [7]. By starting 
from the conventional longitudinal single-particle dynam- 
ics in circular accelerators, the problem that we want to 
solve is formulated in terms of an appropriate wave model 
which describes the evolution of the beam, when the RF 
potential well is taken into account together with radia- 
tion damping and quantum excitation. We show that the 
longitudinal beam dynamics is still correctly governed by 
a Schrodinger-like equation for the bwf. The envelope de- 
scription is straightforwardly obtained from the wave so- 
lution and, correspondingly, the results are compared with 
those that are given in the conventional theory. In par- 
ticular, an asymptotic time-limit for the bunch length and 
the emittance time-scaling law are obtained. 

2 Definition of the problem 

It is well known that the motion of a single particle within 
a stationary bunch travelling in a circular accelerating ma- 
chine with velocity PC (0 x l), with radius R,-, = cTo/2a 
(To being the revolution period), if both radiation damping 
and quantum excitation are taken into account, is governed 
by the following coupling equations: 

dx 
- = ljP , 
ds 

dP qAV - = -- 
ds CT, Eo 

-$P-gf, (2) 0 
where P z z is the relative longitudinal energy spread 
of the particle with respect to the synchronous particle 
(AE = 0), and U(z, S) E (~/CT&) s,” qAV dz’ is the ef- 
fective potential energy that the particle sees after a turn 
in the ring (AV being the corresponding total voltage vari- 
ation seen by the particle). z is the longitudinal displace- 
ment of the particle in the bunch with respect to the syn- 
chronous one and s E ct (t being the time). Eo and 7 
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stands for the synchronous particle energy and charge, re- 
spectively. u 3 Q - l/ra are the phase slip factor, where a 
and y = (1 - p”)- 1/2 the momentum compaction and the 
relativistic gamma factor, respectively. D is the damping 
coefficient [8] and dR/ds accounts for the quantum exci- 
tation effect (noise) (R being the difference between the 
energy effectively radiated by the particle during a time 
interval t and the average of this energy). It is easy to see 
that (1) and (2) are the usual equations for the longitudinal 
motion [B] under the substitution s = ct and P = AE/Ee. 
By denoting with < u2 > 1/2 the quantum fluctuations as- 
sociated to the noise, the term dR/ds can be written in 
the following way: 

dR 
-= 
ds (3) 

where l? is the mean rate of photon emission. 
By considering a linearized RF-voltage only (URF s 

&-j;AVds’ x +“, where K is the RF cavity 

strength), it is easy to prove that the Lagrangian asso- 
ciated to (1) and (2) is given by 

L(x, 2’) s) = 
[ 

1 
-8 
2rl 

A&- (~~)+~, (4) 

where z’ E dr/ds and D/(cTo) is the damping rate. Con- 
sequently, the corresponding Hamiltonian is defined as 
H(z,p, s) = z’p - L(z, z’, s), with p z g = $el’, and it 
can be put in the following form: 

H(G, j5, s) = ;p” + ;p - 2 q 1%;(s) . (5) 

where go(s) E -&e E zoe:‘, $ z p e-+‘, % 3 z e?‘, 
and i = S - Lo . It is interesting to observe that 
H, in the variable c and $, looks like the Hamiltonian 
of an undamped harmonic oscillator. In order to write 
a Schriidinger-like equation for the bwf, which describes 
the longitudinal dynamics of a short bunch (u << Ro) 
in the presence of both radiation damping and quantum 
excitation, we have to write the following quantiration 
rules,? complete analogy with our previous works [2]-[7] 
~3 -+p E --it&, and X 4 H E it%-. Consequently, (5) 
gives (for q # 0) 

a+ 2q= a24 -- wz = - 2 aG2 + ;Kj% + ;KZ;lt , (6) 

Solutions of (7) are welI known in terms of Hermite-Gauss 
modes [7]: 

%&(a, 3) = 
w[-&] - 

[2*22m(rn!)%;(8)] 1’4 Hm &s) i 1 

x exp i2rq?js) ++I+ 2~)&(~)] (8) 
[ 

where the Hm’s are the Hermite polynomials (m = 
0,1,2, . ..). and the function &v(s) satisfies the following 
differential equation: 

3 
ds2 

+K&&l . 
Y 

with f = A!% and &X - -a 
oy ds ’ ds - 43. 

Not: that +r(s) = [s_“, ~sj~(~,s)la dQ]l” -< jj2 >l” 

(quantum-like expectation value of ~j). Thus, Eq.(9) is 
the bunch envelope equation. We observe that Si =< 
(i;-&)2 >=< (x--t0)2 > el*. Consequently, we can write 
both the solution for the b.w.f. in terms of z and s, and the 
envelope equation for the quantity ha: -< (z - ~0)~ >l/’ 
simply from (8) and (9). We easily get: 

exp 
9,(+, 5) = 

p-y” + qr, s)] 
4EP(a 

[2x22m(m!)sZ(s)] 1’4 

x 

(10) 

2 2 -2ya 
ht-“e3 ~0 

4Ax 
! (11) 

with 2 = (l/w e, $$ = -A and 8(z,s) E 
4 x2* 

z-z0 a 1 
w(:+7gy) 

+i(1+2m) J,” $e--78’ ds’. In particular, from 

the (10) we can obtain the longitudinal bunch profile, for 
m = 0 (fundamental mode), which is a pure Gaussian dis- 
tribution: 

exp Z-21J).JL?-7’ 
I%(? s)I” = P ,I 2 K’(a 

[2n Z2(s)l l’a . 
(14 

L ‘J 
where 4 = @(+, s) satisfies the normalization condition 
J-“, I+‘(&.# dj = 1. We note that, when radiation damping and quantum exci- 

tation can be neglected, i.e. 7 = 0 and to = 0, respectively, 

3 Solutions (11) becomes: 

In order to solve (6), we introduce the following transfor- d2a, 2 2 

mation for the bwf: %(G, s) = ‘S(G) exp [i$ s,” Bg(b’)dJ]. 

-+Ko,-3 
ds2 

=o , (13) 
z 

Thus, we easily obtain with oz E< z2 >I/’ (the bunch length), which recovers the 

+P +2 a2Q 
+ +xg2* . 

envelope equation associated to the undamped synchrotron 

teds = - 
-- 

2 &32 
(7) oscillations [7]. 
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In general, (11) shows that: (a) a friction-like term, 
which is in competition with the quantum excitation ef- 
fect, is introduced; (b) a synchrotron frequency shift, due 
to the damping effect, is introduced as well; (c) the emit- 
tance scaling law can be extrapolate, which results to be: 

e=(s) = e e-7’ . (14) 

However, we will go back to discuss on the point (c) in the 
next Section, where we start from the r.m.s. emittance 
definition and give straightforwardly the emittance scaling 
law. We now observe that the asymptotic limit for hz can 
be obtained from (11). In fact, in the limit s -+ co, the 
equilibrium solution gives (h+),s = < (z - ~0)~ >Lp = 0. 

However, observing that < (z - zo)’ >= u:(s) - z:(s), we 

have ((T=)~~ z u,(s = co) = ,a,Eo -L?LL (z),=,. On the other 

hand, from (3) follows that --&g-$f = 2 <“z”p G 
N gp (s), where n. = cm is the synchrotron frequency 

and u,” stands for the bunch energy spread due to the 
quantum fluctuations (quantum noise). Consequently, 

(bzLq = -$$ ($‘),,, where (q?‘)eq = #(s = ~0)~~. 

By introducing the synchrotron number V, E na/wo = 

hm)l~O Ill! (10) easily becomes (a,),, = 9 (o:),,, 

where wg = 2*/To = 2?rRo/c is the revolution angular fre- 
quency. 

4 Emittance scaling law 

First of all, it is easy to prove that, under the trans- 
formation p f p e-:‘, and 5 E z e:#, the quantity 

A =< Sa >< $” > - < 53 >2r is conserved, i.e. < Z2 >< 

B2 > - < $ >2=< x2 >< fi2 > - < a$ >‘, where < . . . > 
stands for the quantum-like average value. Thus, by ob- 

serving that < 5” >=< 6’ > eeTa, < Z2 >=< c2 > eTs 
and < Ss >=< x5 >, and, using (10) for m = 0, we 

easily obtain A = $ = constant, which shows that the 
d$mction parameter of our model, i.e. the longitudinal 
emittance, is one of the Courant-Snyder invariants. 
We now show the connection between this invariant and 
the r.m.s. emittance ;Z~J,, defined in the following way, 
which is similar to the definition given by Lapostolle [I]: 

&h(S) = 4 [< x2 >< d2 > - < XX’ >=I . (15) 

Substituting +’ = vp e-T’, we find: 

&n(s) = 4 [< x2 >< fi= > - < xfi >2] e-27s , (16) 

which is the same emittance scaling law predicted by (14): 

-5 e *h(s) = e2e-2ys . 07) 

Eq.( 17) shows that e is just the initial (s = 0) value of the 
r.m.s. emittance, namely the value produced by the bunch 
source at a given temperature. 

5 Remarks and conclusions 

In this paper we have presented an extension of the re- 
cently proposed thermal wave model for particle dynam- 
ics [2] to the longitudinal motion in circular accelerators 
when both radiation damping and quantum excitation are 
taken into account. We have shown that the particle 
dynamics in the presence of a RF potential well is gov- 
erned by a 1-D Schradinger-like equation for a complex 
wave function, whose squared modulus gives the longitu- 
dinal bunch profile. We have proved that the solutions 
for the bwf of this problem are given in terms of the well 
known Gauss-Hermite modes. In particular, the funda- 
mental mode (lowest-energy mode) gives a pure Gaussian 
space-distribution for the particles, and the corresponding 
envelope equation gives an asymptotic value for the bunch 
length, which is expressed in terms of the quantum fluctu- 
ations (noise). In addition, the emittance scaling law has 
been recovered. We would like to stress that (15) is similar 
to the Lapostolle’s definition of the r.m.s. emittance [l], 
but here the averages are defined in a way which is for- 
mally identical to the Quantum Mechanics. In conclusion, 
the above results allow us to apply the thermal wave model, 
already successfully applied to the undamped longitudinal 
dynamics (protons) [7], to the synchrotron electron motion 
in a more accurate way, since in this case both radiation 
damping and quantum excitation are not negligible. 
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