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Abstract The recently proposed thermol uxwe model 
for transverse particle-beam dynomzcs is tested numerically 
in the case of propagation through a quadrupole lens with 
sextupole deviations. This check is performed by com- 
paring the model predictions, obtained analytically using 
perturbation theory at first order, with the results of a 
conventional tracking code. The results of this compari- 
son are shown here: a remarkable agreement between the 
prediction of the wave model and the output of the stan- 
dard treatment is found, which opens up the possibility 
of studying transverse beam-dynamics from a novel and, 
hopefully, very powerful point of view. 

1 Introduction 

Transverse beam-dynamics in particle accelerators is gen- 
erally approached by means of single-particle tracking. 
This allows the characteristic parameters of the machine 
such as tunes, chromaticities or Twiss parameters to be 
determined, and the stability region of phase-space, the 
so-called ‘dynamic aperture’, to be identified; this last 
one can only be evaluated at the cost of often very long 
and CPU-time consuming tracking-simulation procedures. 
Thr recently proposed thermal w(~ue model for relativistic 
charged particle beam propagation [I] allows us to repre- 
sent the beam as a whole, by means of a complex function, 
the so-called beam wave function (bwf), whose squared 
modulus is interpreted as the transverse distribution func- 
tion: the response of the beam to the different linear and 
non-linear elements throughout the machine can then be 
described in terms of the evolution of the above bwf. 

This model assumes that the transverse particle-beam 
dynamics is governed by a Schradinger-like equation for 
the bwf which is analogous to the equations holding in non- 
relativistic quantum-mechanics and electromagnetic beam- 
optics, as it has been recently pointed out [l]. The thermal 
wave-model has already been applied successfully to the 
treatment of an ideal quadrupole-like lens with octupole 
deviations [2], as well as to the description of the nonlinear 
beam-plasma interaction [3]. 

In this paper, after a brief review of the main properties 
of the thermal wave model, we apply the standard pertur- 
bation theory generally used in solving SchrGdinger equa- 
tion to determine the momentum distribution of a purely 
Gaussian incoming beam at the end of a quadrupole lens 
with a small sextupole deviation. The calculation is per- 
formed in thin lens approximation, up to first order in the 
sextupole strength. The theoretical predictions are then 
compared with the results of a standard tracking code. 

2 The Thermal Wave Model 

According to this model, the transverse dynamics of a 
relativistic particle-beam which travels along the z-axis 
with velocity PC (B x l), interacts with the surround- 
ing medium through a potential u(?, z), and suffers the 
thermal spreading (emittance spreading), is governed by 
a SchrGdinger-like equation for a complex wave function 
\k(r’, z) called the beam 2unve function (bwf). In this equa- 
tion, the role of the diffraction parameter is played by the 
transverse emittance c and the analogous of time is repre- 
sented by the longitudinal coordinate z. Without lack of 
generality, we can consider only one transverse dimension, 
say I. In this case, the beam wave equation of Ref. [l] 
becomes 

a@ c2 a2 
if z = - y&P + U(x, %)U ) (1) 

where Cr(z, z) is a dimensionless potential, which, in gen- 
eral, should be obtained by integrating the field force equa- 
tion 

a 
F = -n~~-y~~c~ ----Ii ; ax (2) 

mo and y = (1 - pz)-‘j2 are the particle rest mass and 
the relativistic gamma factor, respectively. 

Denoting with C(E, z) and N the transverse density and 
the total number of particles, respectively, the physical 
meaning of q is given by the following relationship: 

X(x, 2) = N p@(x, z)12 (3) 

where the following normalization for q has been provided: 

s 

+cO 
IrIr12 dz = 1 (4) 

-m 

According to (3), the squared modulus of V provides the 
transverse density profile of the be*, whilst the squared 
modulus of its Fourier transform, Q, provides the corre- 
sponding momentum distribution. 

The pair of coupled equations (1) and (2) describes the 
evolution of the particle beam and also represents a 1~‘c1t’e 
descriptzon for the charged particle beam optics in paraxial 
approximation. 

Given the beam distribution in the configuration space, 
it is possible to define in complete analogy with quantum 
mechanics, the effective transverse beam size (r.m.s.) 

1 
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x2 11l2 dr , (5) 
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and the average transverse beam momentum: 

UP(Z) = [; 1: I$@1’ ix]“‘. (6) 

An uncertainty principle, fully similar to the uncertainty 
principle known in quantum mechanics, holds: 

Note that the definition of 6 commonly used in accelerator 
physics differs from this one by a factor 2. 

In the following we solve (1) in the case of a purely 
Gaussian initial beam, with the transverse potential given 
hv 

1 U(x, z) = 5”’ x2+ fk* x3 : 

this corresponds to a quadrupole lens of focusing strength 
ki with sextupole aberrations of strength kz. To this end, 
we start considering the simplest case of a beam passing 
through a pure quadrupole. 

3 Beam propagation in a quadrupole 

Let us consider a relativistic charged-particle beam cross- 
ing a quadrupole lens. The stationary configurations for 
the density profile are obtained by solving the following 
equation 

a* E2 a2 
ir-=----~+;klra’If 

a2 2 ax2 
Fixing at z = 0 the dimension of the beam 60 and its 
dispersion (Y = --bi/(cpe), we get as solutions the following 
discrete modes 

l!$(x, 2) = 
1 

[2?r 22” (n!)y4 
H, 

( ) &j 

x2 
1 -- +i 

2 
xexp - - 

4&2(z) 2CP(Z) 
i(2n + 1)4(z) 1 (10) 

where H, are Hermite polynomials, and the functions u(z), 
p(z) and d(z) are defined as follows 

u(2) E 60 
K 

cos AZ + & sin k&z) 2 

+ &sin’&z]“* , 

1 -zj 1 do(z) -- 
P(Z) u(z) dr ’ 

4(z) = { arctan [ (& -+ &) 

x tan (&G) + g - “‘1 arctan (2)) 

(11) 

(12) 

(13) 

In the simple case of lpol = cc and for a thin lens fir, 
with 1 the length of the lens, we get the approximated 
results: u(l) RZ us, and p(l) M -l/(kil). 

4 Sextupole aberrations 

If we consider a quadrupole lens with sextupole deviations, 
the equation to solve is (1) with the potential (8). Unfor- 
tunately exact solutions of this equation are not known, 
thus we adopt a standard perturbative technique [2]. We 
denote with V(z, z) = (1/6)ksz3 the sextupole potential, 
and treat its effect as a perturbation term with respect to 
the aberrationless hamiltonian contained in the r.h.s. of 
(9). Provided that uoka/Jkl <( 1, it is easy to show that 
the non-normalized bwf at the exit of the lens is given by 

cqx,l) = 1 -iA hx3) lln(x,O) ( 
( 

(14) 

where V;, is the initial condition for the bwf, fixed at the 
beginning of the lens. If we assume as initial condition a 
pure Gaussian beam-density profile, (10) for n = 0, with 
vanishing initial dispersion and dimension ua 

*in(ztO) = 22 
[2x &4 exp -G$ [ 1 (15) 

In order to obtain the momentumdistribution of the beam 
(not normalized), we Fourier transform (14)) and we get 

x exp , (16) 

with Ha(t) = 8z3 - 122 

and (-J(l+iy)Fm (17) 

where Kr z kll is the integrated focusing strength. We 
now denote with r = Ksug/(6c) (Ks z kzl), and with Y = 
puo/c E x’/2uPo; the squared modulus of the normalized 
bwf can then be written in momentum space 

IT(y)12 = [l + (II~$Y’ - 
192r2 

(1 +b2pY4 
24r( 1 - S2) 

(1 + 62)s 
y + 167(1- 3S2)Y3 

(1+62)3 1 
x~[2?T(l+6s)(1 + 15r*)2]-“2 exp [-A] ; (18) 

note that IsI 2 is the product of a gaussian function times 
a polynomial function of order 6, where the term of order 
5 is missing. 

5 Numerical Check 

A numerical experiment has been carried out, and the the- 
oretical probability distribution of (18) has been compared 
with the one produced by a standard tracking technique. 

A simple magnetic system has been considered, made of 
two thin multipoles, a quadrupole of integrated strength 
Kr, and a sextupole of integrated strength Kz, whilst 
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Starting Condo tions 
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Figure 1: Simulated and Theoretical I’ Distributions Figure 2: Simulated and Theoretical z’ Distributions 

30000 particles with starting coordinates + and z’ ran- 
domly distributed on a 2-dimensional Gaussian have been 
used to simulate the beam. A tracking simulation of these 
particles through the device has been done by means of a 
simple ‘kick’ code: this is generally more than adequate 
when thin lens approximat,ion can be applied; the coor- 
dinates of all particles have been recorded at the exit of 
each lens. For the sake of simplicity, it has been chosen 
to perform the test comparing the distributions of the CC’ 
coordinate of the phase-space (z - z’); comparing the I 
distribution would have required the addition of a drift 
space at t,he end of the apparatus. 

isfied any more, the dashed line is barely visible, whilst in 
Fig. 2a it overlaps perfectly with the best fit curve and the 
only sign of its presence is the slight thickening of the line. 

It should be also said that, in order to produce a detect- 
able effect after a single pass, the sextupole strengths used 
exceed by far the values typical of circular accelerators. 

Finally the dotted line in Fig. 2b reminds the probability 
distribution of the beam at the exit of the quadrupole, 
before undergoing the non-linear force. 

6 Conclusions 

In Fig. la the starting distributions of +’ are displayed: 
the histogram, properly normalized to take into account 
the total number of particles and the bin width, repre- 
sents the ‘experimental’ data, whilst the continuous curve 
is t,he theoretical starting distribution according to (18) 
with lil = 0 and I<2 = 0, i.e. 6 = 0 and r = 0: the 
agreement between the two makes us feel confident that 
the description of t,he beam by means of its ~0 and ap,, 
and the two normalizations, are done consistently. 

This simple, but very significant numerical experiment 
has proved the capability of the recently proposed ther- 
mal WQW model to describe the charged-particle beam- 
dynamics quite accurately. 

The simulated beam distribution and the theoretical one 
after passing through the quadrupole, (18) with r = 0, 
are shown in Fig. lb. Also here, a complete agreement 
is noticeable: the distributions are much wider, but they 
both keep purely Gaussian with same u’s and heights. 

In Fig. 2 the distributions at the exit of the full device 
are shown for two different strengths of the sextupole: here 
the his!.ogram, as usual, represents the experimental dis- 
tribution, and the solid line is its best fit with a Gaussian 
function times a polynomial of order 6; the distribution 
predicted by the thermal wave model is, instead, repre- 
sented by a dashed line in Fig. 2; the agreement between 
the predictions of the model is quite impressive: indeed 
only in Fig. 2b, where the sextupole strength becomes very 
large and the inequality ook2/3kl < 1, is not strictly sat- 

Much remains to be done - like, for instance, the exten- 
sion to 2- or even to 3-D, or the development of an iterable 
formulation- to make this model really interesting for the 
study of the typical, still unsolved, beam-dynamics prob- 
lems. Nevertheless, its very innovative feature of allowing 
the treatment of the whole beam at the same time, makes 
it look extremely promising for a new, and more complete, 
approach to the subject. 

References 

[l] R. Fedele and G. Miele, A Thermal-Wave Model 
for Relatwstic Charged-Particle Beam Propagation, 
Nuovo Cimento D 13, 1527 (1991) 

[2] R. Fedele and G. Miele, Spherical Aberrations in the 
Thermal Wave Model for Lumznoszty Estimates VI Par- 
ticle Accelemtol-s, Phys.Rev. A 46, 6634 (1992) 

[3] R. Fedele and P.K. Shukla, Self-Consistent Interactzon 
between the Plasma Woke Field and the Driving Rela- 
tivistic Electron Beam, Phys.Rev. A 44, 4045 (1992) 

After Sextuwole Lens 
X' ,racl, 

-o.cm -0.002 0 0.002 o.w* 
X’ ,rad, 

After Twice as Strong Sextupole Lens 

211 PAC 1993


