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Using the standard Hamiltonian perturbation theory, 
the tune shift due to the sextupole periodic pattern in the 
superconducting dipole magnets is estimated for the Su- 
perconducting Super Collider (SSC) machine. The result 
indicates that this effect is of the order of lo-‘. Therefore, 
this effect can be neglected in the dynamics of the beam. 

I. INTRODUCTION 

The discovery of the sextupole, dipole, and quadrupole 
longitudinal periodic structure due to the persistent- 
current field in the HERA superconducting magnets at 
Deutsches-Elektronen-Synchroton Laboratory (DESY) [l] 
has raised questions about the possible effects of this pat- 
tern on the dynamics of the beam. Experiments carried 
out suggest that this periodic pattern is due to the strand 
pitch in the superconducting cable (s.c.), and measure- 
ments indicate that its wavelength is approximately equal 
to this strand pitch (9.1 zt 0.5 cm for the outer coil of 
the Superconducting Super Collider (SSC) S.C. dipoles). 
The sextupole pattern has already been confirmed in a 
short 50.mm R&D dipole magnet [2]: and the effect in 
the dynamic of the beam in the SSC requires a confident 
estimate, even if it is known already that the effect must 
be small. It is possible to see this effect by calculating 
the tune shift through the Hamiltonian formalism. To 
calculate the tune shift, the superconvergent Hamiltonian 
perturbation met,hod [3] is used, applying the standard 
canonical transformations and averaging [4]. 

II. HAMILTONIAN FORMALISM 

The Hamiltonian for a synchronous relativistic 
charged particle traveling around an accelerator ring can 
be written as: 

H = ;(pz - ;A,)’ + ;(P, - ;A,)’ - $4, + 

+~Iil(a)y~-~(li,(sj-~~~‘, (1) 

where p is t,he longitudinal momentum of the particle, 
Pz = pz/p and Pa = p,/p are its normalized transver- 
sal momenta, e is the charge of the particle, c is the 
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speed of light, p(s) is the curvature of the accelerator ring, 
Ki(s) describes the linear lattice of the machine (with- 
out longitudinal oscillation pattern), and A’s are vector 
potential components. This Hamiltonian can be writ- 
ten as H(z,y, 5) = H,(z,y, s) + V(z, y, a) + Ir(z, y, s): 
where H,; I’ = I’(‘) + V(2). and li are defined by 

H,(x, y, s) = ; (pz+ Ii,(s)2) + f (P:+ li,(s)y2) , 

V(l)(x. y, s) = - (e/cp) A, , g; 

V(‘)(r, Y, s) = - (e/v) (PA + PyAy) , PC) 

and 
iY(z, y. s) = (e/cp)‘(A: + A;)/2 (24 

The longitudinal periodic structure of the magnetic field 
induces a longitudinal field component which, in turns, 
requires the three components of the vector potemial. 
For tune shift calculations, it is more convenient to ex- 
press the Hamiltonian in the canonical variable (J, @), 
where J and 4 are the vectors J = (Ji,Js) and 
$ = (++~i,&). This can be accomplished through the gen- 
erating function 

F(s, +, y,@) = -e zi (tan f$, - j;/Z)/%(s) , (3) 
*=1 

where pi(s) is the beta function associated with the mo- 
tion of the particle in the i (z for i = 1, y for i = 2) direc- 
tion; b; is its derivative with respect to s, and &(s) is 
the betatron phase, which is related to the beta func- 
tion through &(s) = &(O) + Ji da/a(o). The action, 
J,, the coordinates and the canonical momenta are given 

by Ji = -aF/‘a4i = [z? + (@*ii - jiti/2)‘] /2bts 

I, = mcos$+i , (3Q) 

Pi = -m (sin$, - ~/jiCOSd,) , (3b) 

for i = 1,2, i.e., i = z,y. Furthermore, the expression 

(24 b ecomes 

(4) 

and the other expressions also become functions of the 
action-angle variables. To calculate the tune shift, the 
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average of the Hamiltonian along the whole machine, C, 
and all over the betatron phases must be determined: 

Hence, the partial derivation of this quantity with ;e: 
spect to the action brings about the tune of the machine, 
V, = a < ?-i > /‘OJi , i = 1,2! which is mainly given by 
the average of the term (4). The other terms, (2b) to 
(2d), give the tune shift of this value. This expression 
represents the first order in perturbation strength. The 
sextupole component of the magnetic field does not in- 
ducr tune shift of a first order in perturbation strength. 
To calculate its tune shift effect, it is required to go to the 
second order in perturbation. 

To go to a second-order perturbation theory, a new 
canonical transformation must be made, (Q, K). This 
canonical transformation is close to the identity (the orig- 
inal action-angle transformation (3)) and is characterised 
by the generating function 

F,,,(s,O:i()=~IiiOi+G(s,d.K) 1 (6) 
i=l 

where G is a function to be determined. The rela- 
tion between the new variable (Q, li) and the old ones 
(9, J) is given by the expressions Ji = dF,,,/d@ = 
Ii, + Go, and Qi = ~F,,,/IYK; = di + GK,, where 
the subindex means pa$ial differentiation. In addition, 
the new Hamiltonian, X(s, Q, I<), is given by 

‘6 = $ K~/LA(s) + 2 (aG/‘a&)/Pi(s) + dG/Bs + 
r=l I=1 

+V(S,@ - GK, Ii + Cm) + U(S,@ - GK,IC + G$).(7) 

Doing a Taylor expansion of the last two terms on the 
right hand side of (8). it follows 

ii = 2 Ii,/@j(s) + Vgi,(s,Q,, K) + 
i=l 

2 
+ c (dG/h++,)//%(s) + aG/ds + V + 

r=l 
2 

+~[VK,G++~ -V9,G~,]+U(s,~,li)+... , (8) 
i=l 

where a possible quadrupole term in (2) has been ex- 
tracted from V and put together with the first-order zero 
average terms. first line in (8), and the term U has been 
put t,ogether with the second-order terms, third line in (8). 
In this expression, it is possible to make 

$g+g+- (9) 

“legally” deleting the term V from the Hamiltonian. The 
soluion of this partial differential equation brings about 
the following expression for G (see Reference [5]): 

G(s, $, K) = - 
s 

’ V(F, o - G(s) + Q(t), 14 4 > (10) 
0 

where the components of the function II, are defined 
by @i(S) = s,” dcs/$i(a). Using this expression in (8), the 
full second-order approximation can be solved, neglect- 
ing higher-order terms. Consequently, the second order in 
perturbation Hamiltonian can be written as 

2 Ii 
“=&cs, ( ( 

--+YEQs d Ii)+nH11+3112+nH22 , (11) 

where ‘H11, ‘H,z, and 3122 are given by 

7-111 = 2 p;!G$,’ - V;l)G;!] , (12a) 
i=l 

1-112 = 5 [Vic’;G$ - V$t’Gg;]+k [Vg:‘G;) - Vz)G$;] , 
i=l is1 

(12b) 
and 

yyHz2 = 2 [Vg!Gg’ - VK)Gg!] +U 3 WC) 
i=l 

where, using (2b) and (2~); the decomposition v= 
Y(l) + V(‘) has been made, and G(“) for i = 1,2 is de- 
fined as G(“) = - s,” V(‘) (<, 4 - g(s) + $(<).A’) d<. 

III. SEXTUPOLE TUNE SHIFT 

The components of the vector potential resulting from 
the sextupole longitudinal oscillation pattern in an S.C. 
dipole is given by [7]: 

Ai31 = -(3&j’ - z/96/5 , (13Q) 

A?) = +(313y - ey3)i/5 ) (13b) 

Ai3) = -(x3 - 3xy2)u (13c) 

where V(S) is the function responsible for the longitudinal 
oscillation pattern (6 is its differentiation) and is given 
by t;(s) = (b3 + asin~s)/3, where b3 represents the sys- 
tematic component, a represents the amplitude of the os- 
cillation pattern, and K denotes the wavelength number of 
the longitudinal periodic pattern. The contribution of the 
systematic sextupole component average value, b3, is well 
known, and it will be ignored in the calculations. 

It is not difficult to see from (13), (2), (3a), (10). and 
(12) the following order of dependence in the action for 
the second-order terms of the Hamiltonian, U(3111) N Ii’, 
O(‘Hl2) - K3, and 0(X22) N K4. Therefore the terms 
(12b) and (12~) are expected to be very smal;, and they 
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will not be presented here. From the expressions (13c), 
(2b), (3b). and (lo), the following expressions are obtained 

L'(l) = (e/pc)23'% 
1 
(rc1p1)3~2cos3qh1 

-3(Ii&)1’21<2,& COS& COS2 $62 
I 

,and (14a) 

G(l) z.z -(e/q1)2~/~ K312 ( 1 2 (z) cos3-pd9sinP41dl(s) 

-3IiyIi2 2 2 (i) cosd $1 sinP $1 cosd pz sinP $2 gfZp(s) 
p=o @I 

(14b) 
where P = 1 - p, 6- = 2 - p, and the functions gfi and 
gf,” are given by 

!?fl(S) = 
I 

s a$‘2(E) ~0s~~~ 61 sinP 61 d< (15u) 
0 

and 

25x 

dl.1 
9:1;2 
&I 
9$2 

;;3: 

:12 
:;;:* 
Xl 

COLLIDER 

-1.546 x lOi 
-8.926 x lOi 
-8.500 x lOi 
-3.363 x lOr4 
-9.072 x 10’4 
-2.057 x lOi’ 
-1.546 x lOi 
-7.227 x 10’s 
$5.660 x 10” 
+1.895 x 101’ 

2.7 x 10-i’ 
9.1 X 10-O 

HEB 

-5.555 x 10’2 
-1.734 x 10’2 

+11.477 x 10’5 
f8.616 x 1015 
-1.719 x 10’2 
+2.141 x 10” 
-5.479 x 10’2 
f1.158 x 10” 
+1.422 x 10” 11 1 +7.805 x 10” 

[ -6.82 x lo-’ 
3.74 x 10-9 

Table 1 
Numerical Integration 

JO 
W) 

where 6i is defined as si(s,E) = vi(s) - ii(<) , i = 1,2 
Doing the partial differentiations of (14s), calculating the 
obtained average values, and making some rearrange- 
ments, it follows that 

< 7-111 >= - ($ { K,2 [27&, - 9l8, ,] 

tIilIi2 [-gQ& + 18Qi;,1 - gdl,t - %?,,2 + 108Q&] 

tG [W$,, - 9Qi:,, 
Ill 

(16) 

where the following definitions have been used: 

P 1 c 
411,l = G 

J 
u(s)O;‘2(s)gfl(s) ds , (17n) 

0 

1 c 
dl,2 = zn o 

-s 
l/2 

4s)P1 (sMsMl(s) ds , (17b) 

1 c 
Q% = ;i;; o 

J 
4s)O;‘2(4si’i(s) ds , (17c) 

and 

Qf:,, = ; 1c~(s)B:‘2(s)Pz(s)s~~(s) ds (174 

Thus, the tune shift is given by the partial derivation 
of this expression with respect to the action variables: 

(Avj),az,,,2, = r,t,~X3/mc2p3, j = 1,2, (18) 

where Xi, Xz are defined as Xi = -27q:,, + Sq:,, + 
40:5, - SO:;, + ;q:12 + & - 54&‘&l AZ = 9Q:;l - 

@Q% + gq:,, +9&2 - 108Qy$z - 27Qiiz + 9Qii,. Table 
1 shows the results of these integrations along the Collider 
and High Energy Booster (HEB) machines of the SSC. 

As can be seen from these numerical values, the dynam- 
ics of the beam are not affected by the longitudinal sex- 

sPz”(4 = I” n([)O:“([),B2(.5) cos’ 61 sinP 61 cos’ 6s sin6 6zd[ 
tupole oscillation patter in the S.C. magnets. It is pointed 
out that the values shown in the table can change by one 
order of magnitude, since the integration depends on the 
wavelength of the longitudinal oscillation pattern. 

Higher-order multiples have smaller contributions than 
the sextupole and can be neglected as well. However, there 
is also a longitudinal quadrupole oscillation pattern in the 
S.C. dipole magnets, but since the quadrupole multiple is 
not a symmetry allowed in the dipole magnets, the ampli- 
tude, a, of this oscillation is expected to be random from 
magnet to magnet. To calculate the contribution to the 
tune shift of the quadrupole longitudinal oscillation pat- 
tern, a simple first order in perturbation theory can be 
done obtaining a contribution Au/a = f10m5, where a 
must be given in Gauss/cm. 

IV. CONCLUSIONS 

The expected tune shift due to the longitudinal os- 
cillation sextupole component pattern is of the order of 
10eg. Therefore, this pattern is not relevant for the dy- 
namics of the particles for the SSC Collider or the HEB 
machines. 
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