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I. INTRODUCTION 

The echo effect has been known for many years in 
different fields of physics. Examples are the spin echo in 
solids [l], photon echo in solids and gases [2], plasma wave 
echo [3]. and the echo in a liquid with gas bubbles [4]. The 
media that exhibit the echo characteristically consist of (or 
contain in them) an ensemble of oscillators with different 
eigenfrequencies and negligibly small dissipation. An initial 
perturbation applied to such a medium excites oscillations (or 
waves) that slowly damp due to dephasing. This kind of 
damping differs essentially from that which would result from 
a dissipative mechanism; in particular, dephasing does not 
increase the entropy of the medium. It has the remarkable 
feature that even after the oscillations are completely damped 
out, the system keeps a “recollection” about them, and a 
special kind of a disturbance applied to the medium can 
transiently restore the oscillations in the form of an echo 
signal. 

The betatron echo in a hadron accelerator [5,6] can be 
observed in a situation where the beam is injected off-center 
into the ring at time n = 0 (n is the time measured in the 
number of turns), causing its centroid to undergo betatron 
oscillations. After these oscillations have completely damped 
out due to beam decoherence, the beam is excited by a 
quadrupole kick at time n = n,. This kick does not produce 
any visible displacement of the beam at that time, but it turns 
out that close to time II = 2nt the beam centroid undergoes 
transient betatron oscillations with an amplitude which is a 
fraction of the initial beam offset. 

A manifestation of echo effect is illustrated by Figures 1 
and 2. Figure 1 shows the amplitude of betatron oscillation of 
an offset beam that damps to extinction due to decoherence. 
If, however, a quadrupole kick is performed at n = 20, one 
observes an echo that recoheres back (and then decoheres 
again) with the maximum around n = 40, as shown in Figure 
2. 
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Figure 1. Damping of amplitude of the betatron oscillations 
of an offset Gaussian beam. 
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Figure 2. Echo response of the betatron amplitude after a 
quadrupole kick at n = 20. 

II. THEORY OF ECHO 
To describe one-degree-of-freedom transverse motion of a 

beam particle in an accelerator ring we choose to work with 
the normalized phase space coordinates 

(1) 

where X is the particle deviation with respect to the closed 
orbit, p is the beta function and s is the path along the orbit. 
We also define the vector a, 

X 
z= 

0 P’ 
(2) 

and the action J and the angle 4 according to 

J=+1zj2 =+(p’ +x2), Q=-arctan:. (2.1) 

According to Courant-Snyder theory, in a perfectly linear 
accelerator, particles are simply rotated clockwise in this 
normalized phase space at a fixed radius through angle 2rrv 
on each turn, where v is the accelerator tune. Thus, 

z,, = Rn(v)zn=o. (3) 

where the subscript n indexes the turn number, and R.(v) is 
represented as the clockwise rotation matrix, 

Rn(“) = 
cos2rmv sin2rmv 

-sin2nnv cos23rnv (4) 

Offset particle beams decohere, if the tune itself depends on 
the particle amplitude Izl, due to systematic non-linearities 
present in the accelerator. For a monochromatic beam, the 
presence of systematic sextupole or octapole non-linearities 
generates a quadratic dependence of tune on amplitude IA, 
i.e., 

44) = vo+Av (5) 
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where v, is the nominal tune, Av has the interpretation of a 
tune spread and r~ is the rms beam radius. In realistic 
situations, Ava v,. 

As stated previously, the beam is assumed to be injected 
off center into the ring at n = 0. Let v(z) = y(x,p) denote 
its initial particle distribution function. After the injection, the 
beam experiences free betatron oscillations and at n = nt, just 
before the quadrupole kick, the vector ,z,,=,,-c can be 
obtained by the linear transformation of the untial z, 

+,,,-E = $ (q)z. (6) 

where vt = v(I 1) g’ z is tven by Eq. (5) with z being given by 
the initial values of the particle’s coordinate and momentum. 

The quadrupole kick produces a transformation of z that is 
characterized by the following matrix: 

(7) 

where ~7 is equal to the ratio of p at the quad location to the 
focal length of the quad. After the quadrupole kick, betatron 
oscillations, proceed with a different frequency, because the 
kick changes the amplitude Izl and therefore the tune. Before 
writing down the matrix that describes oscillations after the 
kick, we have to express the new value of Iz,,=~,+~ just after 

b the quad kick in terms of the old one Izl. Straig tforward 
calculations yield, 

lH* = 1zn=n,+e12 = IQh,(v,)z~ = 
=~z~2(1+~sin2(~t-~)+~2cos2(~1-~)), (8) 

where 0 is the polar angle in the phase space, 0 = arctan 
(plx),and 

qJ1=2?mty. (9) 

Now, free oscillations after the quadrupole kick, n > nt, 
generate a transformation given by Rn-,,, ( v2), with the tune, 

v,=v,+Av$, 

so that a complete transformation, casting the initial z into the 
final z, (n > n,), is the product of the three matrices, 

Z, = be4 ( v2)QRq ( V,)Z = 

= 441+62) 
( 

sin(h+@2) 
I( 1 

x _ 
-sin(& + 02) cos(h +h) P 

cos q$ sin & sin @t sin $2 x 
-4 

t I ! cosf#q cos& sin& cos& p ’ 

where, 
q* =2n(n-q)v2. (12) 

Thus, after n turns (n > nt ), the averaged displacement of the 
beam is, 

Based on this formula, further analysis developed in 
Reference 6 shows that an echo signal appears around the time 
n = 2nt with an amplitude that depends on the initial beam 
offset a, the strength of the quadtupole kick 9 and time nt of 
this kick. Moreover, in principle, multiple echoes with 
diminishing amplitudes can be observed at times equal to even 
multiples of nt 

A simplified perturbation theory of the echo, based on a 
slightly different approach, can be found in Reference 5. 

Using Eq. (13). we performed the integration for a 
Gaussian distribution function, 

IZ-&12 W(z) = &ev -7 t 1 q (14) 

where i = (LO) is the unit vector in the x-direction, in which 
the initial Gaussian beam has been offset by a. The following 
values of parameters have been chosen, vo = 0.285, Av= 
2.18~10-3,u/a=5.84 and q=-0.16. The result is shown in 
Figure 2. 

III. PHASE SPACE PORTRAITS AND 
THE OPTIMAL KICK 

A deeper insight into the physical nature of the echo can be 
obtained by examining successive phase space portraits of the 
distribution of particles. We performed computer simulations 
by tracking 32,000 particles from an initial Gaussian 
distribution, each of which was advanced in time in 
accordance with the equations of the previous section. The 
results are shown in Figure 3. 

An initially offset Gaussian beam is displayed in Figure 
3a. It decoheres into a spiral-like structure (Figure 3b) until, at 
n=20, a quadrupole kick is applied to the beam. This kick 
produces elliptical flattening of decoherence spiral, as shown 
in Figure 3c. The subsequent evolution of the beam (see 
Figures 3d and 3e) shows development of sharp tips which 
interrupt the smooth shape of the spiral. These tips come into 
confluence near where our original off-center beam was 
launched in the first instance, as is seen in Figure 3f. This 
tends to occur at approximately 2nt turns, where nt is the 
number of turns from the launch of the offset beam to the 
quad kick. This confluence of the phase reversal tips is what 
causes the “echo” of the original beam offset. 
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Figure 3. Phase portraits of an evolving Gaussian beam, 
showing the echo effect. 

An important question, concerning the echo, is what values 
of parameters generate the maximal echo. Based on Eq. (13), a 
perturbanon theory can be developed, assuming that the initial 
offset is small, a << g, and the kick is weak, q<< 1. It 
predicts the following form of the echo signal, 

(this formula is valid in the vicinity of the echo peak, 
n=2nt). A simple investigation shows that the maximum 
echo is attained for 

q =O.O%(Avn,)-’ (16) 

and is equal to \inl = Cl. 3%. As shown in Figure 2, for a 
relatively large in?% offset (for which Eq. (15) is not 
applicable), more exact model calculations show an even 
larger echo, which can reach about 50% of the initial 
displacement 

IV. SUMMARY 

The transverse echo effect is a consequence of reversibility 
of the particle motion in an accelerator. Investigation of the 
echo requires special hardware in the form of a pulsed 
quadrupole, that has to be able to produce a kick, having 
duration less than the revolution period. 

Any dissipative mechanism that breaks the reversibility 
(such as synchrotron radiation, intrabeam scattering or 
collisions with the residual gas) will attenuate the echo, 
eventually destroying it completely. A more detailed theory 
should account for these additional effects. On the other hand, 
sensitivity of the echo to these kinds of effects could possibly 
be used as a diagnostic tool. 

Note that the echo which we are discussing should not be 
confused with the recoherence due to machine chromaticity 
and RF-induced synchrotron motion studied in Reference 7. 

The result of the present paper can be also applied to 
longitudinal dynamics to demonstrate the existence of an 
analogous echo in synchrotron oscillations [S]. 
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