MATCH 1.0 - The Program for Analytical Matching of Insertion

Ivan P . Yudin
Joint Institute for Nuclear Research
141980, Dubna, Moscow Region, Russia

Abstract

An atgrithanand a program for investigation of a matdu.d straight insertion has been proposed. Formulae have hern derived for analytic computation of the insertion parameters in a "thick" lenses aproximation. The results of matcling of the synchrotron straight section are presented.

I. INTRODUCTION

Beam Matching

For the beam transport of charged particles, there is the $11+\ldots$ to solve often an inverse problem of beam dynamics, surth as the matching of phase volumes of the beam [3-6]. Wi. assume the detection of parameters for the elements of the magnetic optics (such as geometry, fields) of a facility realizing the beam transport with a phase volume of $l_{1}=\left(x_{1}, x_{1}^{\prime}, y_{1}, y_{1}^{\prime}\right)$ from point s_{1} (beginning of He mathing section of the transport channel, see fig.1) 10 point s_{2} (end of the mathing section) with a phase volume of $V_{2}=\left(x_{2}, x_{2}^{\prime}, y_{2}, y_{2}^{\prime}\right)$ to be the solution of this mulling moblem. We shall assume the betatron functions "i. $3_{1}^{\prime} .4 ", \beta_{1}^{y}$ for horisontal and vertical motion at the Ingiming of the matching section and $\alpha_{2}^{x}, \beta_{2}^{x}, \alpha_{2}^{y}, \beta_{2}^{y}$ at llo whl lo be well-known quantities. Under certain circum--hnows. only some of above mentioned quantities or their combinations, such as $\sqrt{\beta_{2}^{x} / \beta_{1}^{x}}, \sqrt{\beta_{2}^{y} / \beta_{1}^{y}}, \alpha_{1}^{x}=\alpha_{1}^{y}=0$, .1. might be known, whereas the remaining quantities will be arbitrary ones. In order to solve the matching probinnli. it is necessary to establish the required phase leading on i.he tuatching section $\left(s_{1}, s_{2}\right)$, to dispose of applicable "Iromalicity or even to match the dispersion function $D_{x, y}$ $1)^{\prime}$, totally, or sometimes we must take care of the matchill. of direction alld polarization degree of the beam and, possibly, ot other characteristics.

O_{p} timization

The problem of optimizing parameters of such a facility is. comncted closely to the matching problem. Its solution will be carried out by taking into account the limitations on all possible values of the parameters for elements of magnetic optics of the projected facility.

Sometimes, it is impossible or objectionable during the projection period to have lengths of lenses and single gaps lillereal from those, which were selected during preliminary
designing. In experiments with colliding beams [7] for instance, one strives to provide for an interaction point: the cross-over in some free gaps, where $\beta_{\min }^{x, y}$ does not surpass a certain taken value. The solution of the optimization problem as a whole tends to increase the planning and operation economy of the transport channel under investigation.

Usually (see ref. [8,9]), the matching is not separated from the general optimization problem and their solution occurs commonly and simultaneously. In the proposed method, the matching and optimization functions were separated. The optimization was carried out on the basis of a transport channel, which was developped and matched already. In order to solve the matching problems, we propose analytical expressions, which will be compiled below.

II. MATCHING METHOD

We shall present a solution of the matching problems in linear approximation by means of a minimum number of magneto-optical elements: a doublet of "thick" magnetic quadrupole lenses. For the chosen matching section (see fig.1), we shall whrite the matrix equation of matching as follows:

$$
\begin{equation*}
\hat{L}_{3} \cdot \hat{F} \cdot \hat{L}_{2} \cdot \hat{D} \cdot \hat{L}_{1}=\hat{M}(2 / 1) \tag{1}
\end{equation*}
$$

where $\hat{L}, \hat{F}, \hat{D}$ are matrices of linear optics of 2×2 size, the shape of which is well-known, ref.[3,10]. For instance, the matrix elements (m.e.) $L_{12}^{x}=L_{12}^{y}=L, \quad F_{11}^{y}=$ $\varphi_{F}, D_{12}^{y}=\left(1 / k_{D}\right) \cdot \sin \varphi_{D}, F_{11}^{x}=\cos \varphi_{F}, \varphi_{F}=k_{F} \cdot l_{F}$, $k_{F}=\sqrt{C_{F} / B_{p}} ; G_{F}$ is the gradient and l_{F} is the effective length of the lens; L indicates the length of a free path; and B_{p} - the magnetic particle rigidity of transported particles. $M(2 / 1)$ can be expressed (see e.g. [10]) by betatron functions $\alpha_{1}^{x, y}, \beta_{1}^{x, y}, \alpha_{2}^{x, y}, \beta_{2}^{x, y}$ and phase leading $\Delta \psi^{x, y}=\psi^{x, y}\left(s_{2}\right)-\psi^{x, y}\left(s_{1}\right):$

$$
\hat{M}(2 / 1)=\left(\begin{array}{ll}
M_{11} & M_{12} \tag{2}\\
M_{21} & M_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& M_{11}=\sqrt{\beta_{2} / \beta_{1}}\left(\cos \Delta \psi+\alpha_{1} \cdot \sin \Delta \psi\right) \\
& M_{12}=\sqrt{\beta_{1} \cdot \beta_{2}} \sin \Delta \psi \\
& M_{21}=-\frac{\left(1+\alpha_{1} \alpha_{2}\right) \cdot \sin \Delta \psi+\left(\alpha_{2}-\alpha_{1}\right) \cdot \cos \Delta \psi}{\sqrt{\beta_{1} \cdot \beta_{2}}} \\
& M_{22}=\sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \Delta \psi-\alpha_{2} \cdot \sin \Delta \psi\right)
\end{aligned}
$$

Fig. 1 Section of matching by lens doublet.
After having determined the m.e. in (1), we can write el (1) as a system of 6 equations:

$$
\left\{\begin{array}{lll}
T_{11}^{x}=M_{11}^{y} & T_{21}^{x}=M_{21}^{x} & T_{22}^{x}=M_{22}^{x} \tag{3}\\
T_{11}^{y}=M_{11}^{y} & T_{21}^{y}=M_{21}^{y} & T_{22}^{y}=M_{22}^{y}
\end{array}\right.
$$

Where the matrix T is the result of the matrix product on the lefl side of (1). We should note that the equation of $T_{12}=M_{12}$ is fulfilled automatically due to the Lousville Heorema on the concervation of the phase volume: $\operatorname{det}|\vec{T}|=$ $\left\|_{n}\right\| M=1$. The problem of matching phase volumes of the transported beam is solved usually by nonlinear programming methods $[8,9]$. If we have written the matching equation system of (1), which is transcendental, we are able lo pruceed with the following stage: its solution by dired numerical methods. We are able to reduce the composel matching equation system (3) in the present paper by means of successive analitical transformations to one (quation with one unknown quantity, that is $\Delta \psi^{x}$. After laving solved this equation on a computer, we can write The characteristics of the matching section: the lengths of fiollless paths, the effective lengths and the gradients of magnetic lenses analitically as a function of the chosen vecwo of the parameters: $\bar{P}=\left(\alpha_{1}^{x}, \beta_{1}^{x}, \alpha_{2}^{x}, \beta_{2}^{x}, \alpha_{1}^{y}, \beta_{1}^{y}, \alpha_{2}^{y}\right.$, $x_{2}^{\prime}, \hat{\sim} \hat{O}^{2}, \hat{\psi}, \Delta \psi^{y}$) and the free parameter $\Delta \psi^{x}$.

We shall introduce a series of notations, which are helpfill lor solving the equation system (3):

$$
\begin{aligned}
& د_{12}^{\prime}=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}, \\
& د_{12}^{\prime}=b_{11} \cdot L_{3} \cdot b_{12} \equiv\left(a_{22} \cdot a_{13}-a_{12} \cdot a_{23}\right)+ \\
& -L_{33} \cdot\left(a_{22} \cdot a_{14}-a_{12} \cdot a_{12} \cdot a_{24}\right), \\
& د_{12}^{\prime \prime}=b_{21}+L_{3} \cdot b_{22} \equiv\left(a_{11} \cdot a_{23}-a_{21} \cdot a_{13}\right)+ \\
& +L_{3} \cdot\left(a_{11} \cdot a_{24}-a_{21} \cdot a_{14}\right), \\
& \Delta_{3:}=a_{31} \cdot a_{42}-a_{41} \cdot a_{32}, \\
& \left.b_{31}+b_{32} / k_{F}\right) \equiv\left(a_{33} \cdot a_{42}-a_{32} \cdot a_{43}\right)+ \\
& +\left(1 / k_{F}\right) \cdot\left(a_{34} \cdot a_{42}-a_{44} \cdot a_{32}\right), \\
& b_{11}+b_{42} / k_{F} \equiv\left(a_{31} \cdot a_{43}-a_{33} \cdot a_{41}\right)+ \\
& +\left(1 / k_{F}\right) \cdot\left(a_{31} \cdot a_{44}-a_{34} \cdot a_{41}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=\Delta_{12} \cdot \Delta_{34} \cdot\left(b_{22} \cdot b_{32}-b_{12} \cdot b_{42}\right) \\
& \Delta_{1}=\Delta_{12} \cdot\left[\Delta_{12} \cdot\left(b_{32} \cdot b_{41}-b_{31} \cdot b_{42}\right)+\right. \\
& \left.+\Delta_{34} \cdot\left(b_{11} \cdot b_{42}-b_{21} \cdot b_{32}\right)\right] \\
& \Delta_{2}=\Delta_{34} \cdot\left[\Delta_{12} \cdot\left(b_{12} \cdot b_{41}-b_{22} \cdot b_{31}\right)+\right. \\
& \left.+\Delta_{34} \cdot\left(b_{11} \cdot b_{22}-b_{12} \cdot b_{21}\right)\right]
\end{aligned}
$$

where

$$
\begin{array}{ll}
a_{11}=\tilde{s}_{1} \cdot c_{2}, & a_{12}=\tilde{s}_{1} \cdot s_{2} \\
a_{21}=-s_{1} \cdot \tilde{c}_{2}, & a_{22}=-s_{1} \cdot \tilde{s}_{2} \\
a_{31}=\tilde{s}_{1} \cdot s_{2}, & a_{32}=-\tilde{s}_{1} \cdot c_{2} \\
a_{41}=s_{1} \cdot \tilde{s}_{2}, & a_{42}=s_{1} \cdot \tilde{c}_{2} \\
a_{51}=-\tilde{c}_{1} \cdot s_{2}, & a_{52}=-\tilde{s}_{1} \cdot s_{2} \\
a_{61}=c_{1} \cdot \tilde{s}_{2}, & a_{62}=s_{1} \cdot \tilde{s}_{2} \\
a_{13}=M_{11}^{x}-\tilde{c}_{1} \cdot c_{2}, & a_{14}=-M_{21}^{x} \\
a_{23}=M_{11}^{y}-c_{1} \cdot \tilde{c}_{2}, & a_{24}=-M_{21}^{y} \\
a_{33}=-\tilde{c}_{1} \cdot s_{2}, & a_{34}=-M_{21}^{x} \\
a_{43}=c_{1} \cdot \tilde{s}_{2}, & a_{44}=-M_{21}^{y} \\
a_{53}=M_{22}^{x}-\tilde{c}_{1} \cdot c_{2}, & a_{54}=-M_{21}^{x} \\
a_{63}=M_{22}^{y}-c_{1} \cdot \tilde{c}_{2}, & a_{64}=-M_{21}^{y} \\
c_{1}=\operatorname{cos\varphi D}, & c_{2}=\cos \varphi_{F} \\
\tilde{c}_{1}=\operatorname{ch} \varphi_{D}, & \tilde{c}_{2}=\operatorname{ch} \varphi_{F} \\
s_{1}=\sin \varphi D & s_{2}=\sin \varphi_{F} \\
\tilde{s}_{1}=\operatorname{sh\varphi }, & \tilde{s}_{2}=\operatorname{sh\varphi },
\end{array}
$$

After a series of transformations and using this notation, we are able to express the unknown values of

$$
\left\{\begin{array}{l}
k_{F}=\Delta / \Delta_{2}^{\prime \prime} \tag{4}\\
k_{D}=k_{F} \cdot \Delta_{32}^{\prime \prime} / \Delta_{12} \\
L_{3}=\Delta_{1} / \Delta_{1} \\
L_{2}=\left(1 / k_{D}\right) \cdot \Delta_{12}^{\prime} / \Delta_{12} \\
L_{1}=\left(L_{2} \cdot k_{F} \cdot a_{51}+a_{52} \cdot k_{F} / k_{D}-a_{53}\right) / a_{54}
\end{array}\right.
$$

Each of this $\left(L_{1}, L_{2}, L_{3}, k_{F}, k_{D}\right)$ is a function of the parameters $\alpha_{1,2}^{x}, \beta_{1,2}^{x}, \varphi_{F}: \varphi_{D}, \Delta \psi^{y}, \Delta \psi^{x}$ (one of which may be free, for instance $\Delta \psi^{x}$). It follows from solving system (3) by taking into account (4) and above notation that these parameters are coupled by the equation:

$$
\begin{equation*}
\Phi \equiv L_{2} \cdot k_{F} \cdot a_{61}+a_{62} \cdot k_{F} / k_{D}-a_{63}-L_{1} \cdot a_{64}=0 \tag{5}
\end{equation*}
$$

from which we derive the value of the given free parameter, in this case $\Delta \psi^{x}$. For the matching section of the beam injection channel into the synchrotron SPIN, which we shall investigate below, the function $\Phi\left(\Delta \psi^{x}\right)$ is plotted in the fig. 2 , where the solution of eq.(5) corresponding to

Hincical requirements is denoted by the symbol (*). The valut of $O F, P_{D}$ determines the length of lenses.

Fig. ${ }^{\text {F }}$ Fuction $\Phi\left(\Delta \psi^{x}\right) .\left(^{*}\right)$ denoted the physical soluhion of $\Phi\left(\Delta \psi^{x}\right)=0$.

The range of permissible values for these quantities are illustrated in fig. 3.

III. PROGRAM MATCH 1.0 and RESULTS

The describ\&d matching algorithm was realized as I'()ITRAA.V-program MATCH 1.0 on the VAX, IBM, CDC(5.)U0 and IBM PC computers at Dubna JINR. As user's intractive mode with computer, this program allows to $1 . .1$ quiclis wer the spase of the parameters \bar{P} and to -H? the nust economical version of calculated structure.

The matching of the channel [11] for beam injection imn the ring of the superconducting synchrotron SPIN $[1,2]$ wat carried out by the proposed method for an energy of 0.600 Hel with $B_{\rho}=0.111945 \mathrm{~T} \cdot \mathrm{~m}$. The beam envelopes $\bar{X}_{1, n}$ and $Y_{m a x}$ along the injection channel are plotted. Whobeaised the betatron functions $\alpha_{1}^{x}, \alpha_{1}^{y}$ and $\beta_{1}^{x} ; \beta_{1}^{y}$ by muans of MATCH1.0, calculating the betatron motion on 1: transport section from the entrance into the regular smotrotron structure. At the entrance point $\alpha^{x}=\alpha^{y}=$ 0. $z^{x}=2.434 \mathrm{~m}$ and $\beta^{y}=0.685 \mathrm{~m}$. The values of $\beta_{2}^{y}, \beta_{2}^{y}$ allil $\alpha x_{2}^{*}, \alpha_{2}^{y}$ were obtained in beam transport matching arction. At the beginning of this section

1 Ig. 3 Range of values of the parameters φ_{F} and φ_{D}. The symbol © denoted the chosen value of $\varphi_{F}=0.559 \mathrm{rad}$ wn: $\hat{y} \boldsymbol{1}=0.488 \mathrm{rad}$.
$\beta_{x}=\beta_{y}=1.500 \mathrm{~m}$ and $\alpha_{x}=\alpha_{y}=0$. The values of $\beta_{1.2}^{x, y}$ and $\alpha_{1.2}^{x, y}$ which have been obtained at the ends of the matching section follows:

$$
\begin{array}{lc}
\beta_{1}^{x}=2.1327 \mathrm{~m} & \alpha_{1}^{x}=2.51607 \\
\beta_{1}^{y}=1.3168 \mathrm{~m} & \alpha_{1}^{y}=-2.56981 \\
\beta_{2}^{x}=3.5482 \mathrm{~m} & \alpha_{2}^{x}=0.38639 \\
\beta_{2}^{y}=1.2876 \mathrm{~m} & \alpha_{2}^{y}=-0.25838
\end{array}
$$

For the quantities $\bar{\varphi}_{F}=0.559 \mathrm{rad}, \varphi_{D}=0.488 \mathrm{rad}$ and $\Delta \psi^{y}=0.8855 \mathrm{rad}$ we have $\Delta \psi^{x}=2.02296 \mathrm{rad}$. Here is $L_{1}=0.5276 \mathrm{~m}$,
$l_{D}=0.1529 \mathrm{~m}, \quad k_{D}=3.1919 \mathrm{~m}^{-1}, \quad L_{2}=0.8268 \mathrm{~m}$, $l_{F}=0.3096 \mathrm{~m}, \quad k_{F}=1.8056 \mathrm{~m}^{-1}, \quad L_{3}=0.2096 \mathrm{~m}$.

IV. CONCLUSION

Analytical expressions have been found, which offer a solution for the matching problem of a doublet of magnetic quadrupole lenses in "thick" lens approximation. For the given beam profile, it is easy to chose the most economical version of the miatching structure, which fulfills the given requirements. The mathing of phase volume of a beam, which was injected and captured in the accelerating cycle for the injection chamel of the superconducting synchrotron at Dubna JINR, was achieved by means of the given method.

References

[1] I.A.Shelaev, et al. Dubua JINR, P9-83-582, 1983; see,
 High-Energy Accelerators, Fermilab, 11-16 Aug. 1983, Batavia, Illinois, 1983, p. 416.
[2] 1.A.Shelaev, I.P. Yudin. Dubna JINR, P9-12346, 1979.
[3] H.Bruck, Cyclic Particle Accelerators, Atomizdat, Moscow, 1970.
[4] P.F.Meads, jr., Nucl. Inst. and Meth., 1971, 96, p. 351.
[5] P.F.Meads, jr.,IEEE Trans.on Nucl.Sci.,1973,20, p. 875.
[6] I.A.Shelaev, I.P.Yudin. Dubna JINR, 9-11745, 1978.
[7] V.V.Anashin, et al. VEPP-4: Status and plans. In: Proc. of the 9th All-Union Conf. on Particle Accelerators, Dubna, Oct.16-18th,1984,vol.IT,p.233,1985.
[8] S.N.Andrianov et al. In: Conf. on Programming and Mathematical Methods to Solve Physical Problems. Dubna JINR, Sept.20-23rd,1977,D10, 11-11264,1978.
[9] F.C.Iselin. CERN-LEP-TH/85-15, Geneva, May 1985.
[10] C. Bovet et al. A Selection of Formulae and Data Useful for Design of A.G. Synchrotrons. CERN/MPS-SI/Lnt, DL/70/4. Geneva, 1970.
[11] E.A.Matyushevsky, I.A.Shelaev, I.P.Yudin. Dubna JINR, P9-83-817, 1983.
[12] I.P. Yudiu. Dubna JINR, P9-86-601, 1986.

