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Abstract 

This paper describes a study of controlling the coupling be- 
tween the horizontal and the vertical betatron oscillations in 
the 7-GeV Advanced Photon Source (APS) storage ring. First, 
we investigate the strengthening of coupling using two families 
of skew quadrupoles. Twenty skew quadrupoles are arranged 
in the 40 sectors of the storage ring and powered in such a way 
so as to generate both quadrature components of the required 
215’ harmonic. The numerical results from tracking a single 
particle are presented for the various configurations of skew 
quadrupoles. Second, we describe the global decoupling pro- 
cedure to minimize the unwanted coupling effects. These are 
mainly due to the random roll errors of normal quadrupoles. 
It is shown that even with the rather large rms roll error of 
2 mrad, the coupling effects can be compensated for with 20 
skew quadrupoles each having maximum strength one order of 
magnitude lower than the typical normal quadrupole strength. 

I. GLOBAL COUPLING 

A. Introductory Remarks 

For a given skew quadrupole distribution, m(0) = he, 
we can show that the ratio of the horizontal (z) and vertical 
(y) oscillation amplitude can be expressed as [l] 

where ar and bb are the kth harmonic coefficients defined by 

p=+m 

4s) = c ( ~,cospO + b,,hpO), 
p=--m 

where 6’ is the azimuthal angle around the ring. Deriving 
Eq. (l), we assumed that the tunes are near the coupling reso- 
nance, namely, ]vz - I+,( Y k-. For the APS storage ring, since 
the design tunes are v, = 35.22 and vy = 14.30, the above equa- 
tion clearly shows that we need to exite the k = 21 harmonic 
to cause the coupling most efficiently. In the next sections, the 
arrangement of skew quadrupoles to excite the 21*’ harmonic 
is discussed and some numerical results are presented. 

E. Arrangement of Skew Quodrupoles 

Consider N skew quadrupoles with the same strength evenly 
distributed around the ring with period % as shown in 
Fig. l(a). Then Fourier harmonic numbers are k = nN where 
n is an integer. In order to obtain the harmonic number Lz such 
that k = nN + mM, we may impose on top of Fig. l(a) the 
square wave function with period 2. Such a function is shown 
in Fig. l(b) aud the corresponding modulated function can be 
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expressed as a Fourier series by 

f(O) = ?$ c QznyeJ+ (2) 
rn=l,dd 

SZ,Fdd 

h(d + d4)e - kqn~ - df)e 
m 

Hence we show that we can generate an arbitrary harmonic by 
changing the period of the square wave function. 

In the APS storage ring’, the spaces available for the skew 
quadrnpoles are between Q3 and 52 in the upstream half of a 
sector (half sector A), which we will call the A:QS family, and 
between Q4 and S3 in the downstream half of a sector (half 
sector B), which we will call the B:QS family. The number of 
skew quadrupoles considered is ten for each family. We may 
install the focusing A:QS in every fourth cell, say cell numbers 
1,5,9, 13 and 17, and the defocusing A:QS in cells 21, 25, 29, 33 
and 37. This family alone can adequately generate the desired 
21” harmonic. Using Eq. (a), with N = 10 and M = 1 for 
the A:QS family, we find the coefficient of the 21” harmonic 
to be 621 z e = $$ which is greater than unity. The B:QS 
family adds to the quadrature components because A:QS and 
B:QS are not in phase. For the arrangement shown in Fig. l(c) 
which we will call the “normal” arrangement, we may write 

m(e) = c(0 cos31e + b d21e), (3) 

where a = -sin2lA&, b = 1 + cos21A0,, and Ae, is the shift 
of the origin of the B:QS family with respect to the origin of the 
A:QS family which is the middle of the A:QS skew quadrupole 
in cell number 1. In the APS storage ring A@, is f. We note 
that, if A:QS and B:QS are exactly in phase, a = 0 and b = 2. 

In the next section, we present numerical results of the cou- 
pling coefficient obtained by tracking a single particle. We first 
use the “normal” arrangement as the basis and then we attempt 
to find the optimum arrangement for obtaining full coupling. 

C. Numerical Results 
For single particle motion the Courant-Snyder invariant is 

~ 
z 

= x2+ az++Pd2 
PI 

The coupling ratio in this report is defined as 

K+-y 
er mar 

This definition is consistent with the ratio of emittances of a 
group of particles (a beam), because the emittanre is the phase 
space area enclosed by the envelope of the beam. Bowever, since 
the linear optical parameters, p3,n and w=,~, are ill-defined in 
the coupled lattice, our definition of the emittance is not the 
true projection of the four-dimensional phase space volume onto 
the (2, z’) or (y,y’) plane as defiued in [3]. But for our appli- 
cation it is an adequate approximation to the real projected 
emittance. 

‘For the arrangement of lattice elementa and the nomenclature 
rules used in the APS project, see Ref. [z] 
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In order to estimate the coupling ratio with the intentional 
insertion of skew qusdrupoles in the otherwise uncoupled APS 
storage ring lattice, we used the program MAD [4]. For “nor- 
mal” configuration, we achieved full coupling with the inte- 
grated skew quadrupole strength of B’Z =0.25 T which is larger 
than the 0.2 T of the design normal operating strength. 

In order to achieve full coupling at the skew quadrupole 
strength 0.2 T, we optimized the skew quadrupole arrangement. 
One optimization procedure is to rotate the B:QS family by n% 
in a clockwise direction while A:QS is fixed at the original place. 
With n = 1, B:QS in cell 3 goes to cell 7 and B:QS in cell 7 
to cell 11 and so on. This operation is shown in Fig. l(d). By 
using this shifting operation, we control the a and b coefficients 
in Eq. 3 which can be written 

a = a(A : QS) + a(B : QS), b = b(A : QS) + b(B : QS), 

a(A : QS) = 0, b=b(A:QS)=l, 

o(B : QS) = --sin21A&, b(B : QS) = cos21A&,, 

where A& = A&, + s n and A& = $. The coefficients a(E : 
QS) and b(B : QS) for different n values are plotted in the 
polar coordinate system as in Fig. 2. We notice that two skew 
families are almost in phase when 11 = 7 and the amplitude of 
the 214’ harmonic is 

ICZl I = &g-Gg y 2, 

which is the desired result. 
The tune separation and the coupling ratio for various ar- 

rangements of the B:QS family of the skew quadrupoles with 
the integrated strength B’I = 0.2 T axe listed in Table 1. The 
tune separation data, an indication of coupling, clearly shows 
that the R = 7 arrangement is the most efficient way of cou- 
pling the lattice. However, the coupling ratio doesn’t show a 
clear advantage of the n = 7 over the n = 8 arrangement. This 
is because once the beam is close to full coupling, the coupling 
ratio is saturated, i.e. not much advantage is gained from the 
optimized arrangement over a less optimized one. 

Table 1 le 1 
Coupling Effects of Various Skew Quadrupoles ous Skew Quadrupoles 

Arrangement nt 

Arrangement No. 

n=O (normal) 0.104 0.797 

n=8 1 0.172 0.963 

n=9 0.145 0.936 

II. GLOBAL DECOUPLING 

A. Treatment of Weak Coupling Using Matriz Formalism 

Following S. Peggs [5], we may write the normalized transfer 
matrix for the ring as 

(4) 

This normalized transfer matrix is the similarity transformation 
of the Edwards and Teng matrix [6], T’. We further define a 
“fundamental” coupling matrix as 

H=m+n+. (5) 

Then, on the coupling resonance v2 = vs, the tune separation 
becomes 

6”g m 
2*sins(v, + vY) (6) 

The procedure to minimize 6v is often called “global decou- 
pling.” 

According to M. Billing [7], H can be written 

H = H+sina(v, + I/,,) + H-sina(v, - I+,). 

H* are defined as 

(7) 

H*=Cem 
COSW*(S,) sime(h) 

a > 
-sinw+(s,) COSW*(SVI) ’ 

where gm = 9. 1s the dimensionless skew quadrupole 
strength of focal length f and 

4.k) = (BOY - &(sn)) + X(fVg - VI), 

where &.y(sm) is the betatron phase at the skew quadrupole 
measured from the reference point. These expressions are 
convenient because all the quantities used in the formula are 
those of the uncoupled lattice. Defining p = c g,cosw+ and 

r = zg,sinw+, and noting that the contribution of the H- 
term in Eq. (7) vanishes on the coupling resonance, we rewrite 
Eq. (6) = 

6”= -, 
2x 

which we want to minimize. 

(8) 

B. Decoupling Procedure and Its Application 

A routine procedure to decouple the lattice by the operator 
is simulated using the MAD program interactively. In the sim- 
ulation, Qls (see Ref. [2] for locations) are chosen as the trim 
quadrupoles. 

Rewriting p and 7, 

P = ~sqmcOSW+ ~sqmCos~+ + PO 

r = gs gdinw+ gs gdinw+ + r. (9) 

where p, and r0 are from the random roll errors of normal 
qusdrupoles in the ring, we can see that it is convenient to use 
A:QS to control 7, and B:QS to control p, or vice versa. With 
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the midpoint of the straight section of cell 0 as the reference [i’] M. Billing, YXntrols in Use at CESR for Adjusting Hori- 

point, we found that A:QS mainly controls r. With the ten zontal to Vertical Coupling,” IEEE NS-32, No. 5, October, 

skew qua&up&s of the A:QS family, we get 1985. 

p(A : QS) = 0.2 lqml , r(A : QS) = 6.0 lqml. 

For optimal control of p using the B:QS family, we consult %ig. 
2 in order to find the most efficient arrangement. There we 
find that the phase of n = 4 or n = 9 arrangement is almost 

+ 

orthogonal to that of A:QS. L Wt.4 
In the simulation, we used the n = 0 arrangement of 0 

B:QS. Coupling is caused by the random roll errnrs of nor- 
I rl ii-h I) 

mal quadrupoles. The minimum tune separations before and 
after decoupling are summarized in Table 2 with the same seed (b) 
number for the assignment of random errors. We note that 6v 

, I I 1 t II I, I, ,I n I, II 1( n il ,t 1, $y n * 

Table 2 lnlnlnlnln . 
Effect of Decoupling Procedure on the ‘Ames IuIuIuIu- 

Error level 6v (before) 6v (after) A:QS (BY) B:QS (B’l) (C) 
0.5 mrad 0.0186 0.00133 0.019 T 0.055 T i ininmn n D 
1.0 mrad 0.0353 0.00465 0.031 T 0.100 T IuIuIu~ 
2.0 mrad 0.0714 0.0282 0.019 T 0.140 T 

Cdl 

before decoupling is linearly proportional to the magnitude of 
rms errors, as expected. 

The effects of decoupling on the phase motion at the normal 
tunes was found to reduce the coupling ratio significantly. For 
the error level of 2 mrad, the coupling ratio reduced down to 
0.1 from 0.65. 

III. CONCLUSION 

In this report we investigated the coupling procedure to put L 
beam in the fully coupled state and the decoupling procedure to 
cancel the coupling effects due to the random roll errnrs of nor- 
mal quadrupoles. The harmonic analysis of skew quadrupole 
distribution provides the c~mnmn ground for finding the opti- 
mum arrangement of skew quadrnpoles. We achieved full con- 
pling at the integrated skew quadrupole strength of 0.2 T and 
we succeeded in reducing the coupling down to below 10 per- 
cent even with the rather large lattice quadrupole rms roll error 
of 2 mrad. 
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Figure 1 

(a) Periodic delta function. (b) Square wave function. (c) 
Skew quadrupole arrangement where a solid block represents 
the A:QS family and a blank block represents the B:QS family. 
The number on the block indicates the cell number in the APS 
storage ring and we will call this arrangement the “normal” ar- 
rangement. (d) Shift of B:QS by LII amount of 2x/10, namely 
n=l. (e) Shift of B:QS by an amount 7%, namely n=7 (the 
optimized arrangement achieving fuU coupling). 

Figure 2 

+QS) and b(B:QS) coefficients 
quadrupole family. Note that 
b(A:QS)=l.O, this figure shows that 
in phase when n=7. 

from the B:QS skew 
since a(A:QS)=O and 
two families are almost 
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