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Abstract 

Maps of magnetic particle optical elements written in gee- 
metric coordinates have two scaling properties. These are 
connected to the fact that the maps depend only on the ra- 
tio of field strength to magnetic rigidity and on the product 
of field strength to the size of the element. Once the map 
of an element is known for a given type of beam particles 
as a function of the magnetic field strength at the pole tip, 
the first scaling property can be used to compute the map 
for any particle type. With the second scaling property, 
the map can be computed for any similar element which 
differs in size. Usually the map is not known as a function 
of the magnetic field. With DA based programs, however, 
one can obtain the Taylor expansion of that function. 

The expansion can serve to approximate maps which 
could otherwise only be calculated by very time consuming 
numerical integration. To make this method applicable to 
cases where the symplectic structure is important, canon- 
ical maps have to be approximated. The approximated 
maps still have to be completely symplectic up to their ex- 
pansion order. To meet this requirement, we have exam- 
ined how the scaling properties can be used in connection 
with the symplectic representations of Lie transformations 
and generating functions. Useful examples of the result- 
ing symplectic scaling method include maps of fringe fields 
as well as solenoids. Speed and accuracy of the method, 
which was implemented into version 6 of COSY ISFIN- 
ITY, will be demonstrated and a guide given how to apply 
this method most efficiently. 

I. INTRODUCTION 

Computer codes which can manipulate and differentiate 
truncated power series of functions, differential algebra 
(DA) codes, can be used to integrate coupled autonomous 
differential equations dT/ds = f(sT very efficiently by us 
ing the Lie derivative LI = fV + 13, [l]. This entails the 
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possibility to obtain transfer maps of main-field regions, 
where the equation of motion does not depend on the in- 
dependent variable s. The transfer map_ after a main field 
of length le is obtained by evaluating M(q = exp(IeLr)?. 

This method can not be applied when the equation of 
motion is governed by fields which depend on the path 
length s of the reference trajectory. Such nonautonomous 
differential equations are usually solved by some means of 
numerical integration. Evaluating this integration in DA 
automatically yields the transfer map [l, 21. However, this 
integration is extremely time consuming compared to the 
method for the main field, which is faster by up to three 
orders of magnitude 131. 

We took for an alternative which should not compro- 
mise much accuracy but work much faster. Since we want 
to implement the algorithm into an arbitrary order code, 
it should work to all orders. The obtained maps have to 
be completely symplectic up to their evaluation order. For 
repetitive systems this need is obvious. The destructive 
effect of symplecticity violation on phase space would be 
magnified with every turn [4]. The symplectic condition 
can also be important in single pass systems, for instance 
when the spherical aberration of solenoids is of interest or 
when an achromat is designed [6, 51, since the symplec- 
tic condition enforces certain relations between aberration 
coefficients. 

In the past, a variety of approximations have been used 
which speed up the process of obtaining the desired maps, 
in particular for the simulation of fringe fields: 

l Low accuracy numerical integration - is not accurate 
and not symplectic. 

l Fringe field integrals, which are for instance used in 
the codes TRANSPORT [8] and GIOS - can not be 
used for solenoids, is in general not symplectic and so 
far only available to third order although attempts are 
being made to extend it to fifth order [7]. 

l The Impulse approximation, which is used in TRANS- 
PORT - can not be used for solenoids and works only 
to second order. 

Here we present an approximation without those draw- 
backs, which has been implemented in version 6 of the Dh 
code COSY INFINITY. 
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II. SYMPLECTIC SCALING 

A. Scaling 

In geometric coordinates Z = (z, a?, y,y’, 61, a,), which are 
used in TRANSPORT (81, the transfer map has two scal- 
ing properties. Those properties are made obvious by the 
Lorentz force equation 

d(y) - qg; x ii(q = f(F,f) = 0 (1) 

with relativistic 7, mass m, time t, charge Q, magnetic field 
B’, and coordinate vector r’. Let ?(?c, Fe, 1) be a solution 
of the Lorentz equation. When the field is now changed to 
ofi(orJ, we get a new equation of motion. This equation 
can be obtained by substituting (YP for r’, ot for t, and 
leaving + unchanged. Therefore, a field a~(&) leads to 
the equation 

f(ar-, of) = 0 ( (‘4 

which has the solution $r?(cr?e, I$, at). This we call ge- 
ometric scaling: magnifying a magnetic clement and ray 
coordinates by a factor of Q yields a possible particle ray if 
at the same time the field strength is reduced by the same 
factor. 

The second scaling property, rigidity scaling, is also ob- 
tained from equation (1) and states that the particle ray 
does not change whenever the ratio qB/p does not change; 
E denotes the pole tip field. 

Suppose we knew the function Zf = F(li, B), the trans- 
fer function from one plane in the accelerator to another 
as a function of the magnetic field at the pole tip. With 
geometric scaling we could find all maps for similar el- 
ements which differ in size, and with rigidity scaling all 
maps which differ in properties of the particle could be ob- 
tained. However, since we are interested in canonical maps, 
which do not scale via the above method, it is necessary 
to use a momentum dependent transformation z’= T(?‘, p) 
to transform from geometric coordinates z’ to canonical 
coordinates ;= (GJJ,Y,~,&,~E) 1‘4. 

Once a transfer map is obtained at a field Bs in canoni- 
cal coordinates by means of numerical integration in DA, it 
can be transformed into geometric coordinates. The trans 
fer function in geometric coordinates contains the depen- 
dence of motion on the momentum. The required transfer 
function, which depends on the pole tip strength J3, can 
therefore be created using rigidity scaling. Computing this 
function once for a certain particle and an element of a 
certain size is enough to calculate the transfer map of all 
kinds of particles through similar elements of any size, and 
hence this map contains complete information. Using DA, 
the Taylor expansion in the quantity 6~ = (B - Bo)/& 
around the reference field Be is obtained automatically. 
Saving this Taylor expansion gives us a reference file to 
approximate all kinds of maps which can be obtained by 
scaling. The approximation will be as accurate as the Tay- 
lor expansion approximates the function, which is very ac- 
curate for several reasons: 

The Taylor expansion in respect to 6~ can be of higher 
order than the order in which the map is computed. 
There are several methods which yield aberration co 
efficients as multiple integrals over powers of deriva- 
tives of the field and the fundamental rays [?, 6, ?]. 
Since the rays do not change much in fringe fields, 
those integrals are very close to power series in re- 
spect to B. For solenoids this is not the case since the 
fundamental rays in a solenoid strongly depend on B. 

The deviation of the magnetic field from the reference 
magnetic field is often quite benign, especially when 
the approach described in the next chapter is used. 

This direct route yields approximate maps, which how- 
ever would not be exactly symplectic. As mentioned in 
the introduction, this can not be tolerated. We therefore 
compute a symplectic representation, which depends on B, 
and store the Taylor expansion of this symplectic repre- 
sentation. Evaluating the expansion gives an approximate 
symplectic representation, which in turn yields a fully sym- 
plectic map. 

B. Symplectic representation 

As representation we choose the single Lie exponent, which 
has speed advantages compared to the other five represen- 
tations that are implemented in COSY INFINITY: [9]. 

d(F) = M)(B)e~p(E)‘i (3) 

with the usual notat,ion : f : 9 of the Poisson bracket of 
/ with 9, the linear matrix Ml(B), and the Lie exponent 
P(B) which is a polynomial of orders higher or equal to 
three in the map coordinates. The coefficients of the ma- 
trix and of the polynomial are functions of B. Therefore 
the map 

M;‘(B).ti(r’, E) = i+ G(i, B) (4) 
has to be represented by a Lie exponent. Evaluating the 
symplectic condition 

(I + &fl)J(I + a,lqT = J (5) 

order by order shows that this representation always exists 
for symplectic maps and that it is unique. Here I describes 
the unity matrix and J the symplectic matrix. 

Often there are a variety of generating functions which 
can represent the matrix Ml(B), but it can not be guar- 
anteed that there always exists a generating function of 
the classical type. For the cases of fringe fields and for 
solenoids, however, there is always at least one possible 
choice. We choose an appropriate generating function ac- 
cording to the greatest determinant of the submatrix which 
has to be inverted [l]. 

C. Application 

The whole process of using the symplectic scaling (SYSCA) 
procedure is contained in the flow diagram in figure 1. The 
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left part refers to the creation of a reference representa- 
tion by creating a canonical reference map that contains Solenoid 
the dependence of the map on energy and computing the 
dependence of the map on the magnetic field via rigidity 

6 

scaling. Then the symplectic representations are computed 
8 

as functions of the field strength and saved to a file. The 
14 

right part refers to reading the representation and inserting 
20 

68 suitably to describe a map rv?’ which can be scaled to 
33 

the desired map A?*. From this representation the canoni- 
35 

cal map is computed and transformed to a geometric map 
39 60 1 11 

which is used for scaling. The scaled geometric map is 
finally transformed back to a canonical map. Table 1: Speed advantage of SYSCA over numerical inte- 

gration. Mb IWlI 
(1) k(i) 

I: 5; 
T(P’) 

Jw? 
(1) 

P(Z) 

(3) t F-‘(ps) 

(3) 

D. Speed and Accuracy 

Reference [3] contains several example results of SYSCA. 
From this and other experiences, an estimate on the speed 
is given in table 1 as function of the evaluation order. The 
accuracy depends on the order of evaluation of the expan- 
sion in 6~ and the value of 68, When the approximation 
is performed according to the procedure given above, the 
results are usually of an accuracy comparable to the COSY 
standard integrator, which is a Rung+Kutta of 8’h order 
with accuracy of about log-” for coefficients of order n. 
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