
Interactive Simulation of LEB Commissioning Procedure on a
Hypercube Parallel Computer

G. Bourianoff, M. Botlo, B. Cole, S. Hunt, N. Malitsky, A. Romero
ssc Laboratory*

2550 Becklaymeada Avenue
Dallas, Texas 75237

Ahrtrmt

It is desirable that an interactive simulation of
accelerator operation be developed in order to write and test
commissioning, correction, supervisory control, closed loop
control, optimization and automation code prior to machine
construction. The simulator should produce realistic diagnostic
information, analyze and display the information at a
workstation, accept operator input, and react appropriately.
Such a system has been developed by the Accelerator System
Control Simulator Collaboration to model the Low Energy
Booster (LEB). The system IS implemented on a 64 node
INTEL ISPCW60 parallel computer which operates at
approximately M30 MfIops. The simulator can track 512
particles on 32 nodes at 1 turn per second using an element by
element symplectic integrator based on the TEAPOT
algonthm. An operator interface has been implemented on a
SUN Spare 2 workstation operating as a client to a VME based

68040 processor board running VxWorks real time operating
system. Data display and operator input utilize the operator
interface routines in the EPICS control system. Data access
between the SPARC Card and the HYPBRCUBE is
accomplished currently with an interprocess socket
connection. Simulation of the interactive closed orbit
smoothing process will be shown.

INTRODUCTION

Because of its raw processing power, the parallel
processor is being used as the engine in an interactive
simulator of the Low Energy Booster (LEB). This simulator
is being developed for two purposes. The first is to develop a
platform on which high level correction code can be
developed and from which an operator can control the
simulator with the same look and feel he or she will
experience in the control room. The second purpose is to test
the data handling characteristics of the EPICS control system.

Control
Console

c3

ETHERNET BACKBONE t

VME Crate

HYPER-
CUBE
Simulator
Engine

Figure1 Schematic Diagram of LEB Simulator

*Operated by the Universities Research Association Inc., for the
U.S. Department of Energy under Contract DE-ACO2-89ER4C486.

0-7803-1203-l/93$03.00 0 1993 IEEE 128
PAC 1993

Simulator Architecture

The architecture of the simulator is shown in figure 1.
The computational model running on the Hypercube is shown
in the lower right hand comer adjacent to a box showing LEB
instrumentation. The simulation results produced on the
Hypercube are transferred over an Ethernet connection to a
rack mounted SPARC card which formats the data into the
same form produced by the A to D converter which actually
receives the data from the LEB mstrumentation. A software
driver for the SPARC card then reads or writes the data into the
EPICS control system where it is handled in the same manner
that data produced by the actual accelerator instrumentation.

The LEB and its instrumentation do not exist at the
present time. The propose of showing it in figure 1 is to
emphasize the simulator engine is interchangeable with the
actual instmmentation form the viewpoint of the high level
control code.

The communication between the hardware components
shown in Fig. 1 use a collection of hardware links and software
protocols that closely resemble those that will be found in the
SSC control system. The heart of the communication between
the application code ruIzning in the Unix environment and the
instrumentation hardware (modeled here by the Hypercube) is
the EPICS database that physically resides in the Input Output
Controller (IOC). The IOC itself is a Motorola 68040 based
processor in a VME crate. The EPICS database has a set of
pointers that connect variables that can be accessed from the
UNIX world (channel access variables) to actual hardware
addresses that connect to the low level instrumentation. The
database also contains the information on data format, refresh
frequency, error codes, etc. that are required to interpret the
raw instrumentation signals.

In the simulator, data is produced asynchronously by the
simulator engine This is passed over an Ethernet connection
directly to VME memory space. Event flags are posted when
new data has been produced by the Hypercube. Similarly, when
the high level application code has calculated some corrector
settings, an event flag is posted and corrector settings are
passed from VME memory to the appropriate elements in the
simulation code running on the Hypercube. All data input and
output operations in the application code are handled by
channel access calls and therefore the code should mn intact on
the control room console when the accelerator is
commissioned.

SIMULATOR ENGINE

The simulator engine consists of an 64 node Intel IPSU
860 Hypercube parallel processor running a powerful
simulation code based on the TEAPOT tracking algorithm
described in Ref. 1. The Hypercube is a 64 node, distributed
memory, M&ID computer. It utilizes the 1860 RISC processor
on each node. Each node executes the tracking code at
approximately 8 MFLOPS in double precision. All 64 nodes
therefore constitute a dedicated facility operating at
approximately 0.5 GFLOPS. The nodes operate with NX, a

subset of UNIX. It is a single process operating system with
significantly reduced capabilities relative to the full UNIX
implementation. It does however allow socket connections to
individual nodes. Communications internal to the engine are
done using a proprietary message passing library

The simulation code in an element by element tracking
code which exactly integrates the equations of motion in a
symplectic manner. The code models a real accelerator lattice
with assigned errors in virtually all the lattice components. The
code also simulates the operational correction process whereby
lumped element correctors are set to compensate for assigned
random and systematic errors. The simulation model includes
various diagnostic devices, most notably BPMs.

The operational mode of the simulation code has been
modified to more closely resemble an operating accelerator.
Particles can be injected and tracked for a predetermined
number of turns, until the are lost or tracked until an event is
posted on the control console signaling additional information
is to be transferred During the tracking, the system of BPM’s is
measuring the beam centroid position at all locations on a turn
by tnrn basis, and sending this information to the EPICS
control system. For most applications, it is sufficient to track
between 16 and 64 particles in an ensemble,

OPERATOR INTERFACE

The simulator uses the graphical user interface that is
integral to EPICS. Thus, the simulator has the same look and
feel as the actual operating software. The graphical user
interface executes on the Control Console and communicates
with the UNIX world through channel access calls.

At the present time. several high level correction
modules have been written that deal with first turn injection
into the LEB. Eleven modules have been written thus far as
prototypes which exercise the simulator’s capabilities. Figure
2 shows a screen from the operating simulator

The screen demonstrates some of the capabilities and
limitations of the OPI interface. The column of buttons on the
right show the individual correction modules which may be
invoked from the main control screen. The general procedure
is to execute the subroutines in the order they appear on the
screen. The text windows to the left of the Cartesian plot
indicate the operation taking place and wether or not it is
complete. The upper plot indicates the particle trajectory after
the corrector settings shown in the bottom plot have been
implemented. The correction operations require 10 to 30
seconds to execute on the simulator which is similar to the
actual production code.

The text window pair associated with the top graph
show maximum displacement of the horizontal and vemcal
trajectories in mm. The text window pair associated with the
lower graph shows the maximum corrector strengths in
radians.

First experience with the simulator has already yielded
useful information on various features of the OPI. For

129
PAC 1993

example, the scale size can be set only at compile time and the
caption size cannot be set by the user at all. This is in no sense
a serious problem but it does indicate the utility of the
simulator in identifying inadequate or undesirable features of
EPICS in general and the OPI in particular.

CORRECTION MODULES FUTURE PLANS

The operation of the simulator begins with an operator
sitting in front of the control console workstation shown in
figure 1. He or she starts imtiates the simulation code on the
hypercube and initiates the simulator process on the
workstation. A screen as shown in figure 2 appears at the work
station and the operator pushes one of the buttons shown on the
right of the screen. The simulator process reads the required
information from the EPICS database, performs the required
calculations and writes out modified corrector settings to the
Hypercube code by way of the EPICS database.

The simulator will also serve as a realistic environment
in which to determine data handling overheads and operational
bandwidth within the EPICS control system. The simulator
will be extended to include a data buffer which will record data
produced by the Hypercube and subsequently wnte it out in a
“burst” mode which will equal the rate at which data is
produced by the actual instnunentation.

At the present time there are two general classes of
operational code that have been developed for the simulator.
The first is a set of modules that deal with establishing a
smooth closed orbit starting from injection into a completely
uncorrected lattice with an unknown beam offset and unknown
calibration of the main dipole field. The second is a tune
measurement module.

The first class of code consists of eleven separate
modules. The operator interface for this class is shown in Fig.
2. The individual modules a.re listed in table 1.

The simulator will also accurately represent the
hardware configuration that will be encountered in the LEB.
Specifically, the current LEB control system plan calls for one
IOC in each of the 12 sector houses and one concentrator IOC
that communicates with the low level IOCs. The high level
application code will access information from the concentrator
and the lower level 1OC.s will be invisible except for the added
delay in transferring data. The actual delays in this kind of
configuration are not known at the present time and theu
determination is vital to predicting closed loop response times.
It is anticipated that this work will be completed in the next
few months.

REFERENCES

Table 1: Correction Modules 1. L. Schachinger and R. Talman, Teapot: Thin-Element
Accelerator Program for Optics and Trackmg, Particle
Accelerators, 1987, Vol. 22, pp. 35-56. Module Name Function

fill 1st turn inject a beam and track 1 turn

set 1st corr set the first 4 correctors to zero injection
offset and injection angle at entry.

adjust B, adjust dipole field based on 2 BPM’s

Table 1: Correction Modules

Module Name Function

pull beam set 4 additional correctors at beginning of
super-periods

fill 2nd turn inject and track 2 turns. save trajectory
from 2nd turn.

set last corr set last4 correctors to zero beam offset
and angle at entry of 2nd turn.

closed orbit Find closed orbit by averaging particle
trajectories over 128 turns.

smoothing

adjust B,

check offset

Matching

smooth closed orbit

adjust Bo field so average cot-rector
strength is zero

find mjection offset by observing trajec-
tory oscillations about closed orblt.

Correct mjection offset

130
PAC 1993

