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Ahrtrmt 

It is desirable that an interactive simulation of 
accelerator operation be developed in order to write and test 
commissioning, correction, supervisory control, closed loop 
control, optimization and automation code prior to machine 
construction. The simulator should produce realistic diagnostic 
information, analyze and display the information at a 
workstation, accept operator input, and react appropriately. 
Such a system has been developed by the Accelerator System 
Control Simulator Collaboration to model the Low Energy 
Booster (LEB). The system IS implemented on a 64 node 
INTEL ISPCW60 parallel computer which operates at 
approximately M30 MfIops. The simulator can track 512 
particles on 32 nodes at 1 turn per second using an element by 
element symplectic integrator based on the TEAPOT 
algonthm. An operator interface has been implemented on a 
SUN Spare 2 workstation operating as a client to a VME based 

68040 processor board running VxWorks real time operating 
system. Data display and operator input utilize the operator 
interface routines in the EPICS control system. Data access 
between the SPARC Card and the HYPBRCUBE is 
accomplished currently with an interprocess socket 
connection. Simulation of the interactive closed orbit 
smoothing process will be shown. 

INTRODUCTION 

Because of its raw processing power, the parallel 
processor is being used as the engine in an interactive 
simulator of the Low Energy Booster (LEB). This simulator 
is being developed for two purposes. The first is to develop a 
platform on which high level correction code can be 
developed and from which an operator can control the 
simulator with the same look and feel he or she will 
experience in the control room. The second purpose is to test 
the data handling characteristics of the EPICS control system. 
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Figure1 Schematic Diagram of LEB Simulator 
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Simulator Architecture 

The architecture of the simulator is shown in figure 1. 
The computational model running on the Hypercube is shown 
in the lower right hand comer adjacent to a box showing LEB 
instrumentation. The simulation results produced on the 
Hypercube are transferred over an Ethernet connection to a 
rack mounted SPARC card which formats the data into the 
same form produced by the A to D converter which actually 
receives the data from the LEB mstrumentation. A software 
driver for the SPARC card then reads or writes the data into the 
EPICS control system where it is handled in the same manner 
that data produced by the actual accelerator instrumentation. 

The LEB and its instrumentation do not exist at the 
present time. The propose of showing it in figure 1 is to 
emphasize the simulator engine is interchangeable with the 
actual instmmentation form the viewpoint of the high level 
control code. 

The communication between the hardware components 
shown in Fig. 1 use a collection of hardware links and software 
protocols that closely resemble those that will be found in the 
SSC control system. The heart of the communication between 
the application code ruIzning in the Unix environment and the 
instrumentation hardware (modeled here by the Hypercube) is 
the EPICS database that physically resides in the Input Output 
Controller (IOC). The IOC itself is a Motorola 68040 based 
processor in a VME crate. The EPICS database has a set of 
pointers that connect variables that can be accessed from the 
UNIX world (channel access variables) to actual hardware 
addresses that connect to the low level instrumentation. The 
database also contains the information on data format, refresh 
frequency, error codes, etc. that are required to interpret the 
raw instrumentation signals. 

In the simulator, data is produced asynchronously by the 
simulator engine This is passed over an Ethernet connection 
directly to VME memory space. Event flags are posted when 
new data has been produced by the Hypercube. Similarly, when 
the high level application code has calculated some corrector 
settings, an event flag is posted and corrector settings are 
passed from VME memory to the appropriate elements in the 
simulation code running on the Hypercube. All data input and 
output operations in the application code are handled by 
channel access calls and therefore the code should mn intact on 
the control room console when the accelerator is 
commissioned. 

SIMULATOR ENGINE 

The simulator engine consists of an 64 node Intel IPSU 
860 Hypercube parallel processor running a powerful 
simulation code based on the TEAPOT tracking algorithm 
described in Ref. 1. The Hypercube is a 64 node, distributed 
memory, M&ID computer. It utilizes the 1860 RISC processor 
on each node. Each node executes the tracking code at 
approximately 8 MFLOPS in double precision. All 64 nodes 
therefore constitute a dedicated facility operating at 
approximately 0.5 GFLOPS. The nodes operate with NX, a 

subset of UNIX. It is a single process operating system with 
significantly reduced capabilities relative to the full UNIX 
implementation. It does however allow socket connections to 
individual nodes. Communications internal to the engine are 
done using a proprietary message passing library 

The simulation code in an element by element tracking 
code which exactly integrates the equations of motion in a 
symplectic manner. The code models a real accelerator lattice 
with assigned errors in virtually all the lattice components. The 
code also simulates the operational correction process whereby 
lumped element correctors are set to compensate for assigned 
random and systematic errors. The simulation model includes 
various diagnostic devices, most notably BPMs. 

The operational mode of the simulation code has been 
modified to more closely resemble an operating accelerator. 
Particles can be injected and tracked for a predetermined 
number of turns, until the are lost or tracked until an event is 
posted on the control console signaling additional information 
is to be transferred During the tracking, the system of BPM’s is 
measuring the beam centroid position at all locations on a turn 
by tnrn basis, and sending this information to the EPICS 
control system. For most applications, it is sufficient to track 
between 16 and 64 particles in an ensemble, 

OPERATOR INTERFACE 

The simulator uses the graphical user interface that is 
integral to EPICS. Thus, the simulator has the same look and 
feel as the actual operating software. The graphical user 
interface executes on the Control Console and communicates 
with the UNIX world through channel access calls. 

At the present time. several high level correction 
modules have been written that deal with first turn injection 
into the LEB. Eleven modules have been written thus far as 
prototypes which exercise the simulator’s capabilities. Figure 
2 shows a screen from the operating simulator 

The screen demonstrates some of the capabilities and 
limitations of the OPI interface. The column of buttons on the 
right show the individual correction modules which may be 
invoked from the main control screen. The general procedure 
is to execute the subroutines in the order they appear on the 
screen. The text windows to the left of the Cartesian plot 
indicate the operation taking place and wether or not it is 
complete. The upper plot indicates the particle trajectory after 
the corrector settings shown in the bottom plot have been 
implemented. The correction operations require 10 to 30 
seconds to execute on the simulator which is similar to the 
actual production code. 

The text window pair associated with the top graph 
show maximum displacement of the horizontal and vemcal 
trajectories in mm. The text window pair associated with the 
lower graph shows the maximum corrector strengths in 
radians. 

First experience with the simulator has already yielded 
useful information on various features of the OPI. For 
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example, the scale size can be set only at compile time and the 
caption size cannot be set by the user at all. This is in no sense 
a serious problem but it does indicate the utility of the 
simulator in identifying inadequate or undesirable features of 
EPICS in general and the OPI in particular. 

CORRECTION MODULES FUTURE PLANS 

The operation of the simulator begins with an operator 
sitting in front of the control console workstation shown in 
figure 1. He or she starts imtiates the simulation code on the 
hypercube and initiates the simulator process on the 
workstation. A screen as shown in figure 2 appears at the work 
station and the operator pushes one of the buttons shown on the 
right of the screen. The simulator process reads the required 
information from the EPICS database, performs the required 
calculations and writes out modified corrector settings to the 
Hypercube code by way of the EPICS database. 

The simulator will also serve as a realistic environment 
in which to determine data handling overheads and operational 
bandwidth within the EPICS control system. The simulator 
will be extended to include a data buffer which will record data 
produced by the Hypercube and subsequently wnte it out in a 
“burst” mode which will equal the rate at which data is 
produced by the actual instnunentation. 

At the present time there are two general classes of 
operational code that have been developed for the simulator. 
The first is a set of modules that deal with establishing a 
smooth closed orbit starting from injection into a completely 
uncorrected lattice with an unknown beam offset and unknown 
calibration of the main dipole field. The second is a tune 
measurement module. 

The first class of code consists of eleven separate 
modules. The operator interface for this class is shown in Fig. 
2. The individual modules a.re listed in table 1. 

The simulator will also accurately represent the 
hardware configuration that will be encountered in the LEB. 
Specifically, the current LEB control system plan calls for one 
IOC in each of the 12 sector houses and one concentrator IOC 
that communicates with the low level IOCs. The high level 
application code will access information from the concentrator 
and the lower level 1OC.s will be invisible except for the added 
delay in transferring data. The actual delays in this kind of 
configuration are not known at the present time and theu 
determination is vital to predicting closed loop response times. 
It is anticipated that this work will be completed in the next 
few months. 
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Table 1: Correction Modules 1. L. Schachinger and R. Talman, Teapot: Thin-Element 
Accelerator Program for Optics and Trackmg, Particle 
Accelerators, 1987, Vol. 22, pp. 35-56. Module Name Function 

fill 1st turn inject a beam and track 1 turn 

set 1st corr set the first 4 correctors to zero injection 
offset and injection angle at entry. 

adjust B, adjust dipole field based on 2 BPM’s 

Table 1: Correction Modules 

Module Name Function 

pull beam set 4 additional correctors at beginning of 
super-periods 

fill 2nd turn inject and track 2 turns. save trajectory 
from 2nd turn. 

set last corr set last4 correctors to zero beam offset 
and angle at entry of 2nd turn. 

closed orbit Find closed orbit by averaging particle 
trajectories over 128 turns. 

smoothing 

adjust B, 

check offset 

Matching 

smooth closed orbit 

adjust Bo field so average cot-rector 
strength is zero 

find mjection offset by observing trajec- 
tory oscillations about closed orblt. 

Correct mjection offset 
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