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AbShW 
One of the most elusive problems in storage-ring 

commissioning has historically been the determination 
of quadrupole and BPM offset values. We present a 
simple linear solution based on the principle that the 
element offset values are independent of lattice 
configuration. 

I. INTRODUCTION 

The conversion of SPEAR from a collider facility to a 
synchrotron radiation source lead to an increased 
emphasis on understanding the absolute beam orbit in 
the storage ring. The new goal, of course, is to steer the 
photon beams down the beamlines with minimum 
electron-beam offset in the quadrupoles and sextupoles, 
and minimum corrector strengths [l]. This condition 
requires both precision quadrupole alignment and 
minimum DC readback errors on the beam position 
monitors (BPMs). 

At present, a number of quadrupoles in SPEAR are 
known to be misaligned by several mm horizontally, 
and the estimated BPM readback offsets are in some 
cases also several mm. The combined errors complicate 
both beamline steering and analysis of the electron beam 
orbit. For this reason, we have formulated a general 
procedure for determining quadrupole and BPM offset 
values in storage rings. 

II. THEORY 

The first step of any beam-based alignment 
procedure is experimental verification of the first-order 
optics model [2J. In this context, the model refers to 
quadrupole and corrector strengths, and BPM linearity 
factors. 

Once the model is established, the component of the 
closed orbit distortion (COD) induced by correctors can 
be computed, 

xi = @A()’ 
c (1) 

where C!y is the corrector response matrix (units 

mm/mrad), ABi are the corrector strengths, and xf is the 
orbit displacement evaluated at each BPM. The model 
can also be used to predict the COD induced by 
quadrupole displacements, 
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x: = Qj&, (2) 

where Qii has units (mm/mm) and Axi is the column 
vector of quadrupole misalignments. 

In general, the errors could be due to quadrupole 
angle errors, bend roll errors, etc., or sector errors where 
a group of magnets is mounted to a common 
(misaligned) support. For this analysis, we assume the 
kicks generating COD to emanate from offset errors at 
the quadrupoles. 

Superposition of (1) and (2) yields the total COD: 
X iti = x; +x; = C”A\B’ + e”&. (3) 

Isolating the quadrupole contribution, 
Q”&; = xL _ CijAei, (4) 

we can solve for the quadrupole offset vector Axqj using 
standard techniques: 

1. Q-Matrix Inversion (e.g., Singular Value Decom- 
position [3JI 

2. Most Effective Quadrupole (MICADO [4]) 
3. GOLD Method (Piecewise Solution [5]) 

In SPEAR, however, the problem is complicated by 
constant but unknown BI’M readback errors, and an 
unknown energy offset of the beam. Thus, we have, 

Xfod + h; = CjAgj + pyh; + rli!!j!, (5) 

where A 4, is the column vector of BPM readback errors, 

and ni is the dispersion function evaluated at each BPM. 
In matrix form, the COD equation reads 

[ 1 
T 

~~~~-cAi? =[-f:(!j: fj] Afb:A+:: (6) 

where I is the identity matrix, and the colons indicate 
partitioning of vectors and matrices. With the set of 

unknowns expanded to “=(&b:fiq:&/P}, use 

and interpretation of techniques 1-3 outlined above is 
complicated. 

One way to find the set of unknowns s is the 
following. By changing quadrupole strengths, we can 
experimentally generate a linearly independent set of 
Eq. 6 with different response-matrix coefficients d, Qij, 
and ni, and least-squares fit the expanded set of 
equations to solve for the quadrupole offsets, BPM 
offsets and energy error. 
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The error bars associated with the solution vector 

s^={Afb:~*:ApIp} are the diagonal elements of 

[ATA]-lg where A is the response matrix 

Note that a &t of n measurements based on n different 
lattice configurations fill the rows of A, that is, Eq. 6 
repeated n times to fill the rows of A. 

Unfortunately, if we try to determine the entire 

solution vector .? for the storage ring in one pass, the 
error bars are large. Three alternatives are possible: 
1. Compute the difference between the COD Eq. 6 

evaluated for each new lattice relative to the 
reference configuration. The result is elimination of 
BPM offset errors from the solution vector s. Once 

the reduced solution vector 3 = {ATq:Ap / p} is 

found, computation of the BPM offset errors f& is 
straightforward. 

2. Solve the set of Eq. 6 for the n configurations 
simultaneously in a piecewise fashion along sections 
of the ring, and reconstruct the entire solution from 
the separate parts. The advantage is reduction of the 
set of variables, and more control over the fitting 
procedure. 

3. Combination of methods 1 and 2. 

III. APPLICATION TO SPEAR 

A FORTRAN program (ALIGN) was written to 
simultaneously solve the set of Eqs. (6) for a multiplicity 
of lattice configurations in SPEAR. The code structure is 
straightforward. First, we read the measured COD, 
corrector strengths, and the response matrices Cij, Qij 
and vi. Next, we subtract the (n-l) orbit Eqs. (6) 
evaluated with perturbed quadrupole values from the 
initial reference orbit, form the matrix A, and solve for 
the quadrupole offset values tiq and energy error 
Ap/p. Intrinsic BPM measurement errors can be 
included in the calculation. In the last step, the 
quadrupole offsets are held constant, and the fitting 
procedure is repeated to calculate BPM offsets, with 
error estimates. 

Numerically, we found convergent solutions for test 
cases using known seeds for quadrupole and BPM offset 
values in the SPEAR lattice. The solutions had error bars 
approaching 10 mm which indicated problems with 
measurement sensitivity (ill-conditioned response 
matrix A). 

Experimentally, the SPEAR data was measured by 
first moving individual quadrupole family strengths 
until the tune approached either the integer or l/3 

integer resonance (vx=6.820, vy=6.720, nominally). The 
typical excursion in magnet strength was -1%. Later, 
pairs of horizontal (or vertical) focussing magnets were 
moved in opposite directions to obtain up to 15% 
excursions in strength. 

Analysis of the measured data has been limited to 
piecewise solutions across the collider-interaction 
regions, where six quadrupole families were varied. The 
solutions have not converged, however, probably due to 
the combined effect of small orbit perturbations and 
inadequate BPM resolution. To increase the 
measurement sensitivity, one must generate large 
differences in the beta functions that are used to 
compute the response-matrix elements Cii and Qii. 

IV. DISCUSSION 

This procedure for determining quadrupole and 
BPM offset values is in some respects similar to the 
common magnet-shunt technique used to center the 
beam in optical components which dates back at least to 
CEA [6]. In the present development, however, the ideas 
are extended to include use of a beam-calibrated optics 
model and statistical analysis of the percieved offset 
errors. Analysis of the true source of errors (i.e., 
quadrupole offsets versus bend rotations) is extremely 
complicated and probably not possible for most 
accelerators. But by determining the most likely 
locations of kicks and BPM offsets, these points can be 
checked for error, and a working model of the absolute 
beam orbit can be defined. The same procedures can be 
applied to; either circular or linear accelerators. 
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