
Dynamic Accelerator Modeling*

H. Nishimura
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Ab.W-act

Object-Oriented Programming has been used extensively
to model the LBL Advanced Light Source 1.5 GeV electron
storage ring. This paper is on the present status of the class li-
brary construction with emphasis on a dynamic modeling.

I. INTRODUCTION

The Advanced Light Source (ALS) at Lawrence Berkeley
Laboratory represents one of the new generation of electron
storage rings being developed for high brightness synchrotron
radiation experimentation [I]. These low emittance storage
rings require high accuracy, multi-parameter accelerator mod-
els for trajectory calculations and model-based control sys-
tems. During the lattice design phase, computer-intensive off.
line modeling and simulation programs were developed to
study magnet structures and tolerances [2]. The models were
later made more flexible and interactive by taking advantage
of Object-Oriented Programming(OOP) languages and tech-
niques [3]. This paper describes the next logical step to inte-
grate the modeling software with the accelerator control sys-
tem in order to provide model-based control and automated
analysis of the accelerator.

II. DYNAMIC MODELING AND OOP

A. Dynamic Modeling

Traditionally. a tracking or modeling code supports only
one accelerator configuration and it is tightly coupled to a par-
ticular approximated Hamiltonian and its integrator. Dynamic
Modeling [4] is a new modeling technique that supports mul-
tiple accelerator configurations at run time. It also isolates the
simulation code framework from the detail of its numerical in-
tegrator. These tasks can be supported quite naturally using an
OOP concept. The general software requirements that include
correctness, robustness, extendibility, reusability and compat-
ibility [3] are all supported by OOP. Additional specific re-
quirements for the accelerator control system described in the
reference [5] also requires OOP.

*This work was supported by the Director, Office of Energy
Research, Office of Basic Energy Sciences, Material Sciences
Division, of the U.S. Department of Energy, under Contract
No. DEAC03-76SF00098.

Dynamic Modeling is just one of the merits we can get
from OOP. Instead of creating a virtual accelerator using all
the lines of a code, we can construct a class of accelerators
and create, manipulate and annihilate multiple virtual
accelerators at run time. It makes the calibration of the model
efficient because virtual machines behave like dvnamic
variables. It also makes the modeling of operations
undulators easier by keeping many configurations
different undulator settings.

B. Class Libraries

with
with

Our effort has been focused on the development of class
libraries which serve as building blocks of various kinds of
applications. There are three kinds of class libraries: model-
ing, hardware access and applications. A class for modeling
and simulation is called Goemon [6] and supports Dynamic
Modeling.

C. Modeling on the ALS Control System

The programs we used in the lattice design phase [2]
were developed on VAX/VMS and written in VMS Pascal.
The first step to create Goemon was to extract a linear model-
ing engine from them. Then it was rewritten in ANSI C for the
use on Unix workstations and IBM PC clones that have on-
line access to the hardware of the accelerator [7]. We used
Eiffel (~2.3) [8] on Unix to construct a class library at a very
high level, keeping the numerical engine in C [4]. Now it has
been completely rewritten in C++ on PC clones running
Microsoft Windows 3.1 or NT and is being ported to Unix.
This version covers the range from the lower level numerical
engine to the higher level optics calculations and fittings.

D. Design and Analysis

The Object-Oriented Approach was applied not only for
programming but also for design and analysis. We used the

Object Modeling Technique [9] with
OMTool [IO] for object design and
analysis. In this notation, a class is repre-

sented as shown. (We may omit names of attribute and opera-
tion in this paper.)

The physics part (Goemon) was designed to have:
1. Simplicity
2. Distinction between Component and Machine.
3. Separation from Hardware Layer
4. Separation from Graphics
5. Separation from Machine Operation

o-7803-1203-l/93$03.00 0 1993 IEEE 111

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993

Simolicity is important in the class library construction.
The choice of inheritance or aggregation was the main issue
for us. Comoonent and Machine corresponds to magnets in a
warehouse and an accelerator assembled from them. But the
term Machine is usually used for the hardware, therefore we
will call it Accelerator. Separation is to keep the model
portable. Since the low level machine access can be performed
without modeling, a model layer should be independent from
it. Graphics heavily depend on the development environment,
therefore the model should be separated from them. Machine
operation means various kind of parameter fitting and machine
study. Since it accesses the hardware and requires graphics, it
must not be a part of the model. These requirements on sepa-
ration can be well described as follows: Model, hardware ac-
cess and graphics should be supported independently by their
own class libraries and serve as suppliers to the client classes
that include machine operations and studies. This is again the
matter of has-a and is-a relationship.

III. CLASS LIBRARIES

Currently, we classify as follows:
Physics (Goemon)

Component Class
Accelerator Class

Hardware

Device Class
Client

Graphics Class
Operation Class
We describe the structure of 5 classes mentioned above

A. Component Class

A beam line is a series of elements like drift spaces, mag-
nets and monitors. The class Element serves as a base class
for these elements. Drift is a class for drift spaces and a base
for thick linear elements like
quadrupole and bending
magnets. Marker is a base
class for markers and thin
elements that cover multipole
magnets. Wiggler is treated
as a special quadrupole
which will be enough for
elementary linear optics
calculation. When a better
model for a wiggler/undulator is required, it will be a derived
class of it.

The most important method of Element is pass that trans-
fers a particle v=(x,pX,y,py,Sp/I%) through it. Here (x,y) is a
transverse coordinate, (p,,p,) is the canonical momentum,
Gp=momentum deviation, Po=nominal momentum. The stan-

PSMagnet is a base
class for magnet power
supplies. Since there are
many quadrupoles, steering
magnets and BPMs and are
frequently used by appli-
cation classes, dedicated
access is provided.

Previously, Device
was a descendent of
Channel and served in the : commissioning phase for process

dard 4x5 matrix formalism is used as the integrator but it can
be easily replaced with another formula making use of the
inheritance mechanism without influencing other parts.

B. Accelerator Class

This is a class for virtual machines. BeamLine represents
a beam transfer line that is a list of Component Class objects.
It has an array of Celement. rwmua codssdl -,-,, Uasn
Celement class has an pass MeE pa55 Pam
Element, path and Twiss pas5
functions at each position.

P

~hl
Ring is a circular F%YDtan
BeamLine. It has a collec- pass
tion of Element objects to
assemble a beam line. Ring is the class that directly supports
dynamic modeling. An instance of Ring is a virtual accelera-
tor. The figure (right) shows the relationship between
Component and Accelerator classes.
The ALS storage ring classes are derived
from Ring. ALSSRO is the ideal ring with
full symmetry, ALSSR for full lattice and
ALSSRW with wigglers/undulators. Mssno usm
ALSSR has knobs to manipulate any mag-
nets around the ring freely. Then it calculates

+!s
ALSSW

all the linear optics, synchrotron integrals
and related parameters.

C. Graphics Class

A graphical user interface library should support both
windows environment on Unix workstations and PC running
MS Windows. We use zApp [I l] on PC to cover Windows 3. I
and NT. We will be using zApp when OSFiMotif version is
released. A customized graphics class for ALS is being devel-
oped using zApp.

D. Device Class

Layered on top of the ALS control system, Device pro-
vides virtual devices. Channel corresponds to each hardware
access channel (DMM database entry [7]). The figure shows
that Device has one or more channels.

112

PAC 1993

controls. But this design turned out to be inadequate to handle
devices that have many channels and is being rewritten as de-
scribed above. This is also a matter of is-a and has-a relation-
ship.

PSmagnet is for the magnet power supplies and contains
subtasks to perform slow settings of currents. PSquads and
PSsteer are for ganged operation that synchronizes subtask
objects. DCCT is a class for a beam current monitor that
keeps track of beam current intensity. BPMons handles 96
beam position monitors and have been used intensively during
the commissioning period.

E. Operation Class

This supports various kinds of parameter fitting operations
on the Accelerator object which covers tune fitting, orbit
correction and undulator compensation. This class is a client
of all other classes mentioned above and is specific to the
ALS. The construction of this class has just started. Currently
we have Smatrix and Bump.

Smatrix is for the sensitivity matrix manipulation includ-
ing file access. An on-line data taking application and
Goemon both use this class to have a common data format.

Bump is for local orbit bumps with 3 steering magnets. It
can be associated with ALSSR or Smatrix, which makes both

model-based and model-free local orbit corrections possible.
As Bump is not a part of the model, it is possible to pass its
objects to the real-time control layer for fast orbit corrections.

IV. FUTURE PLAN

The following items are on the list.

A. Persistency

As OOP itself does not support persistency, device ob-
jects must read and write the values of their internal parame-
ters including the nominal current settings from/to files. There
is a need for a database management system to administer
these values with access to the objects. We are evaluating the
Object-Oriented Database Class Library Raima Object
Manager [12] for this purpose. It gives persistency to objects
by using multiple inheritance.

B. Model-based Control

The effort to implement a model-based control layer on

top of the existing control system has just been started for the
operation with undulators. The migration of Goemon to the
control system will be done by providing the server-client
mechanism over the network. OOP in this area has not yet
been well investigated.

C. Data Analysis

The ALS storage ring was operated for 6 weeks with RF.
During that period, most of the machine studies were to
measure fundamental parameters (closed orbit, tunes, chro-
maticities and sensitivity matrices) and they have not yet been
fully analyzed. Several application programs based on the
class libraries are being used, but there should be an effort to
construct a class for data analysis.

V. ACKNOWLEDGMENTS

We would like to thank the ALS controls group for their
continuous support, ALS operators for their patience with our
programs, A. Jackson for his encouragement and Carl W. Cork
for stimulating discussions and valuable suggestions.

[II

[21

[31

[41

[51

bl

[71

@I
[91

VI. REFERENCES

” 1-2 GeV Synchrotrons Radiation Source, Conceptual
Design Report”, LBL PUB-5172 Rev. LBL, 1986;
A. Jackson, “Commissioning and Performance of the
Advanced Light Source”, these proceedings.
H. Nishimura, “Tracy, A Tool for Accelerator Design
and Analysis”, European Part. Accel. Conf., 803 (1988).
E. Forest and H. Nishimura, “Vertically Integrated Simu-
lation Tools for Self-Consistent Tracking and Analysis,”
Proc. Part. Accel. Conf., CH2669, 132(1989). J.
Bengtsson, E. Forest and H.Nishimura, “Tracy2 Users
Manual”, unpublished.
B. Meyer, “Object-Oriented Software Construction”
(Prentice-Hall, NJ, 1988).
H. Nishimura, “Dynamic Accelerator Modeling Uses
Objects in Eiffel”, Computers in Physics 6,456 (1992).
C. Cork and H. Nishimura, “Framework for Control
System Development”, Proc. of ICALEPCS ‘91,
Tsukuba, Japan, 1991.
H. Nishimura, “Object-Oriented Accelerator Modeling in
C++“, to be published.
S. Magyary et al., “Advanced Light Source Control
System”, IEEE Part. Accel.. Conf., 87CH23879,532
(1987);S. Magyary, “Anatomy of a Control System: A
System Designer’s View,” these proceedings.
Eiffel 2.3 (Interactive Software Engineering, CA).
J. Rumbaugh et al.., “Object-Oriented Modeling and
Design” (Prentice Hall, NJ, 1991)

[IO] OMTool (GE Advanced Concepts Center, PA)
[I I] zApp (Inmark Development Corporation, CA)
[121 Raima Object Manager (Raima Corporation, WA)

113

PAC 1993

