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Abstract

The second order momentum compaction factor ay is a critical
lattice parameter for transition crossing in hadron synchrotrons
and for the operation of quasi-isochronons storage rings, which
have been proposed for free electron lasers, synchrotron light
ete™ colliders. First
the relation between the momentum compaction factor and the

sources and recently for high Inminosity

dispersion function is established, with the “wiggling eftect”
inclnded.  Then an analytical expression of g is derived for
an ideal FODO lattice by solving the differential equation for
the dispersion fanction. A numerical calenlation nsing MAD
1s performed to show excellent agreement with the analytical
result. Finally, a more realistic example, the Fermilab Main
Injector, is shown uot far away from the ideal lattice,

1  Introduction

I a synchrotron or storage ring, particles with different wmo-
menta have different closed orbits. The difference in the closed
orbit length (AC) between a particle with momentum p and a
reference particle with momeutum py may be expressed as an
eXpanusion in momentum oftset 6

AC = Comgd [14 010 +0(8%)] . (1)

wlere Cy is the length of the reference orbit. and & = L'—h“’- =
%’]—’. Such a dependence of orbit length on mommentum is called
wowentuin compaction, and ag s the linear momentum com-
paction factor. The second order momentun compaction factor
oy is the focus of this paper.

Altliongh rooted in the transverse motion, the momentum
compaction effect mflnences the longitudinal motion through
the phase slip factor

1 T - TEI - 2
)= = = b+ O ). 2
i T o + b+ O(87) (2)
where o = 0o = = & — 4 and
! I 4
f{"fz 15
m = Yoy + :;/:,—-) - ;/_2)_ ({)

Here T is the period of revolution for a particle with momentim
offset & and T is for a synchronons particle, 4 and y follow nsual
relativistic kinematic notation, and 57 is the transition ganma
for a synchronous particle. Near transition g and wo are small
and the contribution from the noulinear term iy = ooy + 2)
becomes very important. Nonzero oy leads to the fact that
higher momentum particles and lower momentum particles can
not agree when the synchronons phase should be switched [1],
with transition timing spread (the so-called nonlinear time)
proportional to {o; + ?) This intrimsic transition mistiming
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is partly responsible for longitudinal emittance blow-up and
beam loss for some machines. If we can set o = —1.5, the
nonlinear effect will be suppressed and transition crossing will
become much less harmful. For an isochronons electron storage
ning, which was proposed for free electron laser [2], synchrotron
light source [3] and recently for collider [4], o) determines the

RF bucket height [5).

2 The Wiggling Factor

The closed orbit 2 (5,4) of an off-momentum particle 1s dis-
cribed by the dispersion tunction

> = Do(s)+ Di(s)8 +0(%), (4)

D(s,b) =
where ,,(s.0) is the reference orbit, and s is the azimnthal
coordinate. Furthermore the effect of closed orbit offset on o
is negligible [6], therefore we can assume r,,(s,0) = 0. For a
span of df. the orbit length

dl = (p4 Dob+ Dy 0*)d8 /1 + (D))
D Dy 1.5,
= s 1+~fh+(,—‘1+7D{;)h'] (5)

where D) = i’f—-)“ This relation is also valid for a straight sector
if the limit p — oo is taken i the appropriate way.
The difference in total closed orbit length of an off-

momentun particle from that of a reference particle is simply
Al = %(/H~rl~): %n(}(h—kumj)rls. (6)

Comparison of Eq.(6) and Eq. (6) yields

1 [ Dy Dy .

ng = (—'(]% 71].\ = <,;> (7)

- (Di/p) 4 (?(f)\ (8)
vy 2o

wlere () = ¢ ds and (..) weans the average in the whole ring,
1”2
and the last term in Eq. (8) w = ﬁ([){,") = %ﬁ% is called
the wiggling factor 7).
Betatron oscillations may also contribute to the difference in
orbit length [5], which provides a coupling mechanism between
transverse and longitudinal motion. Tu general, this effect is

very suall.

3 Differential Equations For The Dispersion
Function

The differential equations for dispersion fanction can be derived
from the Hamitonian, and expanded to the second order of 6
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as [6]

" 1 . 1
Dy +(—2—[(1)D() = -, (f))
! r
" 1 . D{* .
Dl+(p—2"[\l)Dl = —“ - KDy

‘)

2
-1C-QQ - Lt (o)
/] » 2

where the prime represents the differentiation with respect

. . . O

to s, the azimuthal coordinate. Here K} = I':%# and
K, = - By : ) ) )
G o= oot are respectively the gquadmpole and the sex-

tupole strength for a reference particle.

These inhomogenous Hill equations could be solved in priu-
ciple by using Green’s function 8]. But it is not obvions to see
low the dispersion function is related to other lattice param-
eters. In the next section we will solve Eq. (9) and Eq. (10)
explicitly for an ideal FODO lattice, which is not far away from
some realistic lattices, as shown later.

4 A Soluble Case: The Ideal FODO Lattice

The ideal FODO lattice that we consider is composed of N
identical FODO cells, or 2N half cells. Each half cell starts at
the center of a thin focussing quadmpole (QF) and ends at the
center of a neighboring thin defocnssing quadrmpole (QD). The
absolute integrated strength of half QF aud QD is the same
¢ = K|l = %, where K is the quadmpole gradient, and
Iy, focal length of the half quadrpole. The bending augle of
‘—1} %, where Lis the half cell length, or
the length of each dipole since I, — 0, and R ix the radins

each dipole 1s 8y = & =
of curvature for the reference particle. Another characteristic
parameter is

,ﬁ:l]Lz.‘iill‘/‘Jl/‘_h (”)

wlich should not be confused with azimuthal coordinate s,
where ¢/, is the betatron phase advance per half cell.

It seems that one only needs to solve Eq.(9) and Eq.(10) in
the dipole. Actually the necessary boundary conditions lave
also to be imposed by the thiu quadmmpoles.

[u the dipole (p = R and Ky = 0). the general solution of
Eq.(9) 1s

Dog(#) = R(1 + ¢y sinf + ¢y cosd). (12)

The coutinnity of D and -57[1-) = (14 %)_l[)', conibined
with the symmetry condition Do, = 0 at the center of the
guadrupoles, can be solved to get
e, )
== ~—~“Q—H- (14)
Q (14 Q2)cos 2

¢ =

wlhere Q@ = Ry = y(— = %J_— Subtituting Eq.(12) into Eq.(8) and
; :
Eq.(2) gives

fy
2

1 [t Dos 210Q*
= — —=1- — .
I » /_%u b= Bl = OF) (14)
where t = hm(%‘l)‘ and the wiggling factor
3 s [B0 (14 )1 + Q) + 21(1 - Q%) 05
i = = N

2o

4(14+ Q%) [Ho(1 4 Q%) — 21Q7]
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ay in an ideal FODO lattice
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s = q*L = Half quadrupole strength * Half cell length

Fignre 1. oy as a function of s(x singy) with different
number of cells m an ideal FODO lattice.” The solid line is
the prediction from the analytical expression, which agrees
excelently with MAD calenlation with sector dipoles (dia-
mond points). The plus points are MAD caleulation with
rectangular dipoles

Following the same procednre, we now solve Dy, In the dipole
I I

, ] 1, Dog )
Dip+ = Dis= —o( 22 1) +

i L Dig’
R? R R

R 2

(16)
with the general solntion

, 1 -
DmW):HPme+qﬁmﬂ—;—D&,

- (17)

which leads to a very simple closed resnlt

i

1 Dig ) R
ooy 0 ./_f_n ( R

4
2

(18)

¢4 can be solved from the boundary conditions and snbstituted
mto Eq.(18) to get

Q(Q*1* +3)

19
#o{1 4+ Q)" 1)

oy =

Further substitution of Eq.(14) nto Eq.(19) allows one to write

QUQ’t +3)

0 = : : - — 20)
CT Q[0 + Q%) - 2QY) (
which conld alternatively be expressed as a fauction of s
410242 4 ag 2
G717 4 380
oy = UL A A (21)

(60" + 5%)? {Hnwn! +5%) — Zf,ﬂ] '

This resnlt was also independently reached throngh a geometric
;l.ppl'u:n‘h[f)].



Notice that both w and o ouly depend o the strength of the
quadrupoles and the mumber of cells. Fig. 1is a plot of n as
a fanction of s with different munber of cells. For a given N,
and oy ncrease as quadr lpnles become \(It)llgkl The [H)\\er‘

value of « s singy. In

—
P

the case s =0 (cyclotron)‘ from Eq (14) ,m(l Eq. (20) we liave
ag = 1 and o) = 0 as expected. For real synchrotrons thy is
usually between 30 and 45 degrees, and the operating range for
s1s 0.5 ~ 0.7, Also notice that w and o increase with N. Siuce
N lncreases as ring size (ronghly N oc \/ﬁ), w and oy are higger
for larger maclines,

Iu the case N — oo, the centrifugal focussing of dipoles be-
comes negligible, and the analytical results reduce to

1 5
oy = a 1—'17 ) (22)
314 &)
ap = 3w= - (23)
2(1-53)

5 Comparison With MAD

In general, the differential equations cannot be solved analyti-
ifortnuately, o)
available from the general codes such as MAD

cally and numerical method has to be nsed
is not directly
[10], which instead return the momentum compaction factor
oy The value of ) lhas to be extracted from the dependence
of o on & Care must be taken abont which definition of o, is
used 1 a specific code. Tt may be

pdC I 1 2 )
ap = B =g 14200 4 - = Sag)d| +0(84), (24)
@ ‘]l' 2 2 :
or
SdC )
g = f—’ﬁ = ool +20,8) + O(), (25)

or something else. [t is also nuportant to test these codes nsing
some very simple lattices, for which an analvtical solntion is
possible. If there is a good agreement, we can have confidence
1 numerical sohitions of realistic Tattices snelias the Main Ring
or the Main Injector, or an isochronons ring.

A lattice composed of 80 siwmplified FODO cells was set up
as imput to MAD. The length of a quadrupole was cliosen as 1
micron. For every s, the momentnm compaction factor ) 18
calenlated by MAD at three momentum offsets & = =8, 0, 48,
with 8, = 0.001. Then o) was extracted from a, as

o = n‘,,g(h,)—n,,vz(—brjv (26
davgdy
if o = . The excellent agreement is achieved nsing the sec-
ond definition, as shown in Fig. 1. The systematic discrepancy
fonnd in ref. {11] is now understood.

6 Deviation From the Ideal FODO Lattice
ZJ. S0

N — o approximation valid) as an example, we will see ow
the deviations from an ideal FODO lattice affect a,.
In the wdeal lattice

we assutued there was no dipole edge foenssing, as with sector

Taking the Main Tujector (N = 80,5 = sin ¥ = 7'3[

Sector Dipoles and Rectangular Dipoles:

dipoles. In reality the Main Injector dipole is rectangnlar, How
mnportant s this? Fig. 1 shows that the difference between

sector dipoles and rectangular dipoles is negligible in the case
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of Main Injector. But as the cell phase advance and/or number
of cells decreases the edge focussing becomes more important.
So speaial care has to be taken with edge focussing in small
accelerator rings.

Finite Length Quadrupole. For the simplicity of analytical

solution, we liave used a thin quadrupole approximation. What
happens if quadrupole has finite length? From the model lat-
tice, we see that o) changes fl'nm 1.545 to 1.550 by increasing
the quadrupole length from 2 micron to 1 meter. This is not a
surprise becanse the dominant sonrce of momentum compaction
comes from dispersion in dipoles, and the boundary conditions
are dominated by the integrated strength of the quadrupoles.

Contribution from Seatupoles I the sextupole strengths are

Al ¢l L

st o N
set to maxe Hie net i

sl satoioal
N LIC navilial

IS} Y e
- Jjji
cliromaticity, Dy (and thus ag and w) will not change while D,
will be maodified, as shown in [11]

<Dl)z—R+(1—f+i). (27)

T

m = {_(.” +,~)“~ (28)
2(1-33

s <oy = For the

G8, becanse 0 < 5 < 1.

A value
of o) = —1.5 can be obtained in principle by setting f =
resulting in unpleasautly strong nonlinear fields.

Main Injector s* = 0.5, and we have oy = 0.587.
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