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Abstract 

Four-gap superconducting resonators have been developed 
at Argonne for use in the low-beta positive ion injector 
(PII) for ATLAS [l]. These structorrs have been used suc- 
cessfully for ion velocities as low as 0.007~ with q/m=O.l. 
First order matrix optics [2] and linear theory for the phase 
space transformations in accelerating systems [Z], [3] are 
applied to the PII linac which includes low-beta heavy ion 
rf resonators and magnetic solenoids. 

These provide a new method to match initial phase space 
ellipses when used with higher order transfer maps or ray- 
tracing calculations. And also we present a quantitative 
measure of nonlinearities using the concept of rms emit- 
tances and deviations of phase space coordinates between 
linear and nonlinear transformations. As a byproduct a 
way of identifying the dominant source of nonlinearity of 
system is indicated. 

I. ACCEPTANCES 

The maximum emittance of a beam that a svstem can 
accept is called the acceptance of the svstem; the particles 
within this acceptance will be transmitted without striking 
the wall. But only some part of the acceptance would 
transform linearly if there are aberrations. 

A. Geometrical Acceptance 

The geometrical acceptance of a system is defined as the 
acceptance calculated from linear phase space transforma- 
tion. This is larger than the useful acceptance if nonlin- 
e&ties are present. 

The beam envelope at a position in a system with ac- 
celeration is given for an axially s.vmmetric beam in n- 
dimensional phase space by [Z]: 

+2 =: \/(det M)““/&,, (1) 

where det bI is the determinant of the transfer matrix. 
And 82, cl are the beta-function at the position 2 and the 
initial beam emitlance in one projected plane, respectively. 

The beta-function at point 2 is found if the initial Twiss 
parameters of the phase space and the transfer map are 
known. Equation (1) is still valid for a nonaxially sym- 
metric beam if n-2. 

We define: 
fl’ = (det M)““p, (2) 

so that p’ is the effective beta-function. 
Then the geometrical transverse acceptance of a system 

is limited by the maximum p‘ and apertures of optical 
elements: 

R2 
GTacc = F--- (3) 

“lax 
where R is the aperture of the optical element at which 
the effertive beta-function has maximum value &ax. 

For longitudinal phase space there is no physical aper- 
ture which limits acceptances, but to maintain the phase 
focusing aspect of the resonators phase excursions or time- 
of-flight deviations must be limited. For example if the rf 
phase offset is $,I for the reference particle, then the devia- 
tion of rf phase angle should not exceed &I for any particle 
because at zero rf phase nonlinearity woald be very impor- 
tant. Hence an estimate of the longitudinal acceptance is 
obtained by requiring: 

At i ; = Rlong 

where At is the deviation of the time-of-flight and w is the 
angular rf frequency of a resonator. 

Now Rlong is analogous to the radial aperture for the 

transverse case, so we have for an estimate of the longitu- 
dinal acceptance: 

RLng 
GLacc z ~ 

L-J KlRX 

where Rlong was defined above and &ax is the maximum 

value of the longitudinal beta-function. 
In practice, we find that the longitudinal acceptance de- 

fined in this way is a good starting point for determining 
the linear acceptance as described below. 

The geometrical acceptances can be found numerically 
by fitting the Twiss parameters of the phase spaces with 
an appropriate optimiser. The transverse or longitudinal 
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acceptance is calculated for an assumed initial set of Twiss where det M is the d&=rminant of a transfer map of a 
parameters. Then the optimizer varies the Twiss param- system. 
eters until the maximum values of the geometrical accep- Thus (det M)- ‘fr,nr is constant of motinn. And we use 
tances are determined. it to modify the usual definition of normalized emittance: 

B. Linear Acceptance 

The nonlinearity of a system was not considered in the geo- 
metrical acceptance calculations described above. In prac- 
tice only a fraction of the geometrical acceptance trans- 
forms linearly. To establish a quantitative measure of the 
degree of nonlinearity, a new quantity, called the deviation 
of the particle i, is defined: 

z; -- z;, 
dev. E ___- . 

Xl,,, 

where subscript 1, n indicate linear and nonlinear transfor- 
mations of the particle i, respectively, and +I,,, means the 
maximum value of the coordinate z in thr linear trrtnsfor- 
mations of the geometrical acceptance. 

We introduce a method to find linear acceptances by 
comparing linear and nonlinear transformations. As an 
example, let us find the transverse linear acceptance with 
dev. < 1%: 
. Find the geometrical acceptance using an optimizer. 
. Find maximum values of position I, and divergence z& 
from the linear transformation of the initial geometrical 
acceptance ellipse. 
. Find deviations of phase space coordinates of individual 
rays wilh coordinates chosen on a grid bounded by the 
geometrical phase space ellipse from linear and nonlinear 
transformations. 
. Dixard all initial ra,ys for which one of the deviations 
is greater than 1% to get the linear acceptance from thr 
remaining rays. 

Note that this deviation method giws the area snd the 

orientation of a phase spare ellipse. ThP degree of nonlin- 
earity is controlled through thr choice of the magnitude of 
drv. parameter 

II. NONLINEARITY OF A SYSTEM 

For nonlinear systems the increase of rms emittance 
(“emittance growth”) is often used as a quantitative mea- 
sure of the nonlinearity. Here we examine the degree of 
correlation between the magnitude of the dev. parametu 
used above and the amount of emittance growth exhibited 
by the system. 

The rms emittance is defined for a pair of phase space 
coordinates z and t’ by [4]: 

crmr = 4J< 22 >< d’? > - < xd >” (7) 

For linear systems the rms emittance is transformed in 
general [5]: 

c,,,,,z = (det M) frm,l (6) 

E,,,, = (det M)- ’ cr,nn (9) 

Equation (9) would yield the common definition of the 
normalized emittance for the transverse case if crrnr were 
multiplied by the initial value of fly. Because of the invari- 
ance of the normalized emittance under linear transforma- 
tions it might be used as a measure of the nonlinearity 
of a system by comparing its values between linear and 
nonlinear transformations. 

We define differences of normalized emittances between 

linear and nonlinear transformations: 

62” z c>f,, -- c:;;,,,,, (10) 
where superscripts 1, t indicate longitudinal and transwrse 
phase spaces, respectively, and 0 indicates initial emit- 
tance. 

Below we explore the correlation between the normal- 
ized rms emittance accepted by the system and the mag- 

nitude of the two maximum values of the dev. parameters. 
WP also examine the relations between the rms emittance 
growth and the magnitude of the dev. parameters permit- 
ted in the transverse and longitudinal dimensions, includ- 
ing the effects of cross terms. 

III. APPLICATION 

We applied these concepts to the first section of the PII 

linac, which consists of three magnetic solenoids (s) and 
three low-beta rf resonators (I) as shown in Figure 1. The 
strengths of magnetic solenoids are adjusted to give beam 
waist conditions at the center of each resonator. Beciruse 
of thp low velocities the transfer maps are calculated ana- 
lytically point-by-point through the system. 

As an example a “‘“U”+ beam with an incident velocity 
0.0085~ was used. The rf settings of field gradients and 
initial rf phase angles for the three resonators are: 
11: 4.5 MV/m (-lo’), 12-l: 3.0 (-SO), 12-2: 3.0 (-15’). 

The calculated geometrical transverse acceptance of the 
system is 263~ mm.mr which is shown as the large ellipse 
in the Figure 2. The individual rays inside this ellipse 
are transformed nonlinearly with up to 3rd order off-axial 
fields of the rf resonators and magnetic solenoids to find 
linear acceptances for different deviations defined in the 

equation (6). In these raytracing calculations the initial 
longitudinal phase space area was assumed to be zero so 

that nonlinear coupling from transverse to longitudinal di- 
mensions is emphasized. 

Fignre 2 shows the portion of the geometrical accep- 
tance which transforms linearly with the dev. parameter 
limited to less than 0.01; the corresponding areas accepted 
are 263~ mm.mr (geometrical) and 70% mm’mr (linear). A 
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calculation of the accepted rms emittance as a function of 
the maximum value of the dev. parameter over the range 
from dev. ~0.01 to 0.10 shows a nearly linear relationship 
with the value of the linear rms acceptance increasing to 
220~ mm’mr at dev. =O.lO. Figure 3 shows the details for 
dev. 5 0.05. Similarly, we evaluated the rms emittance 
growth of the transverse and longitudinal coordinates as 
a function of the dev. parameters in the transverse case. 
It was found, in agreement with previous experience with 
ATLAS calculations, that for very small nonlinearity in 
the transverse map, there are much more significant non- 
linearities appearing in the longitudinal dimension due to 
second-order cross terms. (The lowest order aberrations 
in transverse focusing are third order.) This is seen in 
Figure 2 where the distortion in the transverse ellipse is 
very small (6~’ = 0.05~ mm.mr) whereas the increase in 
longitudinal emittance is significant (6~’ = 4Orr keV.nsec). 

One interesting thing is the noticeable difference of the 
orientations of the geometrical and linear phase space el- 
lipses shown in Figure 2. To understand this the effective 
beta-functions for the two different orientations were plot- 
ted in the Figure 1. Qualitatively, these cnrves indicate 
that nonlinearities are minimized by keeping the effective 
beta-function small in I1 while allowing it to be larger in 
51. 

IV. CONCLUSIONS 

The method to find linear acceptances and to scale non- 
linearites of a system by deviations of linear and nonlin- 
ear transformations seems to be well defined. Since this 
method is applicable to any accelerating or beam trans- 
port system it will provide a very easy and fast way to find 
linear acceptances and sowces of nonlinearities, if higher 
order transfer maps are available. 

This work was supported in part by the U.S. Department 
of Energy, Nucl. Phys. Div, under contract No. W-31-109- 
ENG-38 

[II 

PI 

131 

[41 

151 

REFERENCES 

L.M. Bollinger et al. Nu&ar Physics, A553, (1993) 
859c-862c, and references therein. 

K. Joh, Michigan State University. Ph.D. Dissertalion, 
(1993). 

D.R. Douglas, J. Kewisch, and R.C. York. Proceedings 
of the 1988 Linear Acceleralor Conference, Williams- 
berg, Virginia, (1988) 328. 

P.M. Lapostolle. IEEE Trans. Nucl. Sci., NS-18, No. 
3, (1971) 1101. 

Alex J. Dragt, Filippo Neri, Govindan Rangarajan. 
Phystcal Revieur A, Vol.45, Number 4 (1991) 2572. 

0 0.5 1 I .5 2 
G-4 

Figure 1: The system configurations and the effective bcts- 
functions for Twiss parameters from the geometrical acceptance 
(solid) and the linear acceptance (dotted). 

40 

20 

0 

-20 

-40 

-20 -10 0 10 20 -1 -05 0 05 1 

20 Ial order 
10 1 

g 

0 g 
g 

-10 

-20 
~ 

sg 
c 

-10 -5 0 5 10 

20 raytrac,np 
_ 

IO % 
g 

0 

~ 

g 
/+ 

-10 -3; 
9 

-20 

-10 -5 0 5 LO 

Figure 2: The phase space transformations of linear accep- 
tance by linear (1st order) and nonlinear(raytracing) trandor- 
mations with dev. =I%. The emittence induced in longitudinal 
phase space via nonlinear coupling with transverse coordinates 
is shown in the top right plot. 
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Figure 3: The phase space transformations of linear acceptanrc 
by linear (1st order) and nonlinear(raytrecing) transformations 
with dcv. =5%. 
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