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Abstract 

Errors in a crab compensation scheme such as betatron 
phase advance errors will lead to shape and orientation 
changes of a bunch. These changes can be computed in a 
systematic manner. 

Introduction 

The necessity of using a large number of bunches in the 
B-factories envisioned for the future necessarily aggravates 
the problem of separating the beams at the parasitic cross- 
ing points near the interaction point (IP). A possible so- 
lution is to use a crossing angle. The induced synchro- 
betatron coupling of an angle crossing can be completely 
eliminated in theory with ‘crab’ compensation in which 
the bunches of each beam would be tilted at the IP by an 
angle ecrb = 0,,,,,/2 where 6’cror, is the full crossing an- 
gle. In terms of the beam-beam interaction, the problems 
with a crab compensation scheme for a crossing angle are 
therefore caused by imperfections in the compensation. It 
is therefore important to understand the effect that crab- 
bing errors will have on the beam in order to set tolerances 
on allowable errors. These errors can come from various 
sources. Possibilities include errors in the betatron phase 
advances from the crab cavities to the IP, the finite wave- 
length of the crab cavity RF, etc. It is the purpose of 
this paper to show how the effect of these errors can be 
analyzed. 

In general, the compensation errors can be divided into 
three groups: The first group comprises all zeroth order 
effects where the effect of the error on an individual parti- 
cle is independent of the particle’s coordinates. Errors in 
this group can result in transverse offsets between oppos- 
ing bunches at the IP and/or longitudinal offsets of the IP 
itself. The second group comprises all first order effects 
where the effect of a compensation error on an individ- 
ual particle is linear in the particle’s coordinates. These 
errors result in crab angle errors and/or changes in the 
bunch’s width and length. The final group comprises all 
higher order effects. These errors will cause distortion of 
the Gaussian shape of the bunch. 

Several different types of crab compensation schemes 
have been proposed. In this paper ‘transverse crabbing’ - 
in which two RF cavities are used to give a time-varying 
sideways kick to a bunch as it passes through either cav- 
ity - will be considered[l]. An alternate scheme calls for 
using dispersion at the RF accelerating cavities to give the 
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correct crab angle at the IP[2]. In any case, the general 
analytic technique outlined in this paper will be applicable. 

Zeroth Order Errors 

Errors in a Crab cavity’s RF phase (timing errors) will 
produce eeroth order effects. A phase error in one cavity 
will add a constant horizontal kick to the beam creating 
an orbit bump. At the IP the displacement AZi, due to a 
timing error A~RF in one cavity is [I] 

As, = 
c Atn, 
-tan(h) 

2 (1) 

First Order Errors 

First order errors in crab compensation lead to changes 
in the crabbing angle Bcrb and aspect ratio T,, which is 
the ratio of the beam height (minor axis) to beam length 
(major axis). In order to be able to make the calculation of 
Bcrb and f,, at the IP one needs to know two quantities[3]; 
namely, the one turn transfer matrix from IP to IP, Tip--rip, 
and the ratio of the emittances of normal modes r( f eo/eb. 
For the purposes of the analysis one need only consider 
the degrees of freedom in the plane in which the beam is 
being tilted. Tip+;, will then be a 4 x 4 matrix. Using the 
idealized ring shown in Figure 1 Tipdip can be constructed 
as the product of seven matrices 

Tip-+ = Tel-ip Tkt Tort Tk2 Tip-c2 9 (2) 

where Tel++, and Tip+2 are transport matrices between 
the crab cavities and the IP, T,,, is the transport matrix 
through the arc, and Tk1 and Tk2 are the kick matrices 
for crab cavities labeled Cl and C2 respectively. 

The matrices on the right hand side of equation (2) are 
parametrised using a set of input parameters. The crab- 
bing is taken to be in the horizontal plane with z being the 
longitudinal axis and z being the horizontal axis. For the 
purposes of this paper, the input parameters are denoted 
with a tilde to distinguish them from calculated quanti- 
ties. For example, the input parameter &(ip) is used in 
the construction of the matrices Tip-tcZ, and Tcl+p (see 
below) but once Tip-+ip is specified one can explicitly cal- 
culate the value of beta at the IP, &(ip). Only in the case 
where there are no crab compensation errors will one be 
assured that &(ip) will be equal to &(ip). Explicitly, the 
matrices were constructed as follows: The transport ma- 
trices Tc,--ipr T.,,, and Tip-,-Z are assumed to have the 
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Figure 1: Model ring with 2 crab cavities. 

general form: 

T 81-lrz = Tv(az) (2 ;,> T;&), (3) 

where T,(,l is used for putting in the dispersion r) and 
dispersion derivative 0’ at a given point s: 

i 

1 

T 
0 

v(*) = -7,‘(a) 
0 

0 0 q-4 
1 0 5’(s) 

$8) 1 0 i ’ 1-1 

0 0 1 

and R, is the 2 x 2 rotation 

t 
J- e cos(Z&) R, = 
$y!T$ki 

matrix 

XAEGZijsin(ls~.) \ 

with Q2- being the horizontal phase advance between sl 
and 82. For T.,, the matrix R, has the same form of 
equation (5) with Q = Q., the synchrotron tune, and 
@(al) = p(s2) = G with t+* E UE/E. For T,l,ip 

and Tip-c2~ R, is given by 

where I in the above equation can be thought of as the 
local momentum compaction factor. I = l,l,i, for T,--+ip, 
= lip-c2 for Tip--tcZ. 

The crab kick matrix Tkl for crab cavity Cl is given by 

%I= (kiKt i $’ i) (7) 

with a similar matrix for T~z. In the above equation the 
normaliration constant nt is given by 

Table 1: Crab Compensation Input Parameters. 

The normalised voltage v-is such that with no errors in 
the compensation, Vcl = Vcz = 1 will result in the actual 
(i.e. calculated) crab angle at the IP, 6&, being equal to 

the value of the input parameter g&. 
Once Tipdip is specified the calculation off, is obtained 

by assuming that all the emittance is generated uniformly 
in the arcs as outlined by Sagan[4]. The calculation of 6&b 
and r, then follows from the general analysis for calculat- 
ing rotation angles given by Orlov and Sagan[J]. 

Figure 2 shows the effect of varying Qci+,p while keep- 
ing the other input parameters at their nominal values 
as shown in Table 1. The nominal values of the param- 
eters were chosen to be similar to the current design of 
the Cornell B-factory CESR-B. There is a coupling reso- 
nance near Qci-ip = 0.53 where the normal mode tunes 
Q. and Qb satisfy Q. - Qb = integer. Near the coupling 
resonance the normal mode emittance ratio P, blows up 
and is of order unity and there are large variations in 6crb 
and 7,. The sum resonance is near Qcl-ip = 0.70 where 
Q. + Qb = integer. Near the sum resonance there are also 
large variations in fE, 6crb and f,. The difference between 
the sum and coupling resonances is that near the coupling 
resonance the beam is always stable while near the sum 
resonance there is a stop band where the one turn matrix 
displays an instability. In addition to the two mode cou- 
pling resonances there are also single m_ode resonances res- 
onances near Qcl-.ip = 0.12 and near Qci-.+, = 0.62 when 
one of the normal mode tunes passes through 0.5 and 1.0 
respectively. Within the limits of the linear model used in 
the analysis, the single mode resonances have little effect 

upon &,b, ?or 01 7,. In fact the half-integer resonance is 
not detectable on the scale of figure. 

As a practical matter, it is important to understand the 
variation of &rb near the operating point as a function of 
the various parameters. Figures 3 and 4 shows the effect 
of varying Vc:l and ii respectively upon 6crb and T, 
while keeping the other input parameters at their nominal 
values. From Figure 3 one finds that AI&/&b % A?..-12. 
This is what one would naively expect since this change is 
l/2 of what one would get if both cavity voltages where 
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Figure 2: Eigen tunes crab angle, be_am aspect ratio and 
normal mode emittance ratio verses Qcl-ip. 

changed in unison. With Figure 4 one sees that it takes 
a rather large dispersion to effect the crab angle by more 
than a few percent. Thii is to be expected since the kick 
at the crab caviti.es is, to first order, independent of the 
dispersion. 

One can consider variations in the other parameters[4]. 
The General conclusion is that with the horisontal and 
longitudinal tunes far from a coupling resonance then &rb 
and rd are not ‘overly’ sensitive to errors in the crab eom- 
pensation. 

Higher Order Effects. 

Higher order effects produce a distortion from a Gaussian 
profile. A systematic analysis is beyond the scope of this 
paper. These effects, however, are inevitably most signif- 
icant near the extremities of the beam where the beam 
density is minimal. As an example of a higher order effect, 
consider the effect of finite crab cavity RF wavelength. A 
particle with displacement .z will feel a kick in the crab 
cavity 

AZ’ cx sin(2rt/XRF) N (&) (2 - g?) (9) 

0.9 1 .o 
%I 

Figure 3: Crab angle and beam aspect ratio as a function 
of voltage in crab cavity Cl. 

8 1.1 1 I/ I 
-$ / / 

I 
2 1.0 I- 

&z 
> 

8 c.rb/ -cIb J 
-- fs 0.9 r,/rd 

I I I 

/iT 1 

0 

m9 b-4 

10 

Figure 4: Crab angle and beam aspect ratio as a function 
of the dispersion at crab cavity Cl. 

nonlinearity. Considering that only 1% of the particles 
have I > 2.3~~ the finite RF wavelength does not have a 
large effect on the overall beam shape. This is not to imply 
however that higher order effects are necessarily negligible 
since they induce synchrobetatron resonances for large am- 
plitude particles. 
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For XRI. = 0.6 m (500 MHe RF) a particle with a z of 
0.023 m (2.3~~) will feel a kick which deviates 1% from 
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