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Abstract 

Results of nonlinear beam dynamics experiments at the 
IUCF Cooler Ring in past two years are discussed. Our 
experiments include studies on (1) betatron motion at 1-D 
resonance island, (2) linear coupling correction, (3) Hamil- 
tonians determined experimentally from 2-D difference and 
sum resonances, (4) longitudinal phase space tracking, (5) 
beam response to If phase modulation, (6) beam response 
to rf voltage modulation, (7) synchro-betatron coupling 
induced by dipole field modulation and (8) attractors of a 
weak dissipative Hamiltonian system. 

1 INTRODUCTION 

There have been many nonlinear beam dynamics experi- 
ments in the past. [l-5] The beam-beam interaction Ex- 
periments at Novosibirsk VEPP-4 measured particle loss 
and lifetime at various nonlinear resonance conditions and 
similar experiments at the SPS observed large background 
in detector area when a high order resonance is encoun- 
tered. [l] More recently, due to advances in electronics, 
large amounts of data can be recorded for post analysis, 
where the Poincari maps becomes a powerful tool in the 
study of nonlinear dynamics. [3-5] Nonlinear perturba- 
tions in the accelerator include sextupoles, octupoles, and 
higher order multipoles. These anharmonic terms usually 
do not significantly perturb the particle motion in phase 
space except when the betatron tunes are near to a res- 
onance condition with mv. + nv, = C (m, n,1 integers), 
where the Poincare map deviates from a simple ellipse. 

Figure 1: The schematic drawing of the IUCF Cooler Ring. 
The BPMs used are marked as PH or PV. 

nances and studied longitudinal synchrotron PoincarC map 
with rf phase modulation, rf voltage modulation and the 
synchro-betatron coupling. From these experimental data, 
we were able to derive nonlinear Hamiltonian at nonlinear 
resonance conditions. [5-61 In section 2, the experimental 
procedure and some results will be reported. Section 3 will 
discuss future plan and conclusions. 

This paper reports highlights of recent nonlinear beam 
dynamics experiments performed at the IUCF Cooler 
Ring, which is one of recently completed storage rings with 
electron cooling. [6] Fig. 1 shows the IUCF Cooler Ring 
geometry. The lattice properties are C = 86.8 m, with 
Y* = 3.8, v, = 4.8 and h,. = 4.0 m. The beam rigidity 
varies from 1 Tm to 3.6 Tm with proton kinetic energy 
ranges from 45 to 500 MeV. At 45 MeV, the revolution pe- 
riod is To = 969 ns. The 95% emittance is electron cooled 
to rz - 0.3~ mm-mrad with 6. N 0.7 mm. The available 
dynamical aperture is about 20~ mm-mrad. There are 
two rf systems capable of operating at harmonic numbers 
from h = 1 to 13. Our experiment started in December 
1990, when the cooler experiment CE22 was approved by 
the Program Advisory Committee. The first test of ex- 
perimental hardware was in May 1991. We completed 50 
shifts of beam time in March 30, 1993 and are request- 
ing 50 shifts for a new series of beam dynamics experi- 
ments. Currently, our hardware/software can digitize 6D 
phase space up to 256K turns. In past two years, we have 
studled 3v,, ¶Y,, v. - v,, v, - Zv,, v, + 2v, transverse reso- 

2 NONLINEAR BEAM 
EXPERIMENTS 

Our experimental procedure started with a single bunch 
being kicked transversely with various transverse angular 
deflections, Ox, by a pulsed deflecting magnet within one 
revolution or kicked longitudinally by rf phase shifter or 
rf phase modulation or rf voltage modulation. The sub- 
sequent beam-centroid displacement was measured by two 
BPMs (four BPMs for both 2 and .z degrees of freedom) for 
betatron motion. The synchrotron motion was tracked by 
1 BPM located at a high dispersion region with D, = 4.0 m 
for the momentum deviation and 1 WGM or a sum signal 
with a phase detector relative to the rf wave to obtain the 
synchrotron phase. The turn-by-turn beam positions were 
digitized and recorded in transient recorders up to 256K 
memory in 8 channels for the 6D phase space. The num- 
ber of turns for the particle tracking can be increased by 
digitizing once in every P turns (the rate divider), where 
P varies from 1 to 99. Important issues in these experi- 
ments are (1) the stability of beam closed orbit and be- 
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Figure 2: P&car@ maps at third order resonance 

Figure 3 The Paincare map at, the fourth order resonance 
(lt>ft) is shown in the inset. The effect of the linear coupling 
nlotion is shown as a winding motion around all island fixtld 
point The PoincarC map after linear coupling correction 
is shown on the right. 

tatron t.unrs. (2) the resolution of beam position monitor, 
(3) linearity and dynamical range of the amplifier, (4) dig- 
it.izat.ion bandwidth for the time resolut,ion and (5) careful 
preparation of the beam condition. Depending on physics 
ihsues, the available memory can br also important. For 
most of electron storage rings, the damping time is of the 
order of milliseconds atld the betatron amplitude decoheres 
in hnndrcd revolutions, the amount of memory buffer is not 
iltlportant. For t,he study of diffusion process in the hadron 
storage ring, large memory becomes necessary 

Besides hardware issues, beam properties in storage 
rings arc also very important in nonlinear beam dynam- 
ics experillwnts. To bpt,ter simulate single particle motion, 
nolllinfwr beam dynamics studies prefer a small emit,tancc 
beam The BPM measures the centroid of the charge dis- 
tribution. With a smaller beam size, dynamics of reso- 
nance islands can be explored. The oscillat,ion frequencies 
inside rhc island can be measured. The effect of bet&on 
drcoherence is smaller for smaller beam size also. When 
t.hr bunch of particles is kicked to a large betatron ampli- 
t.ude, particles with different betatron tunes decohere in 
the twtatrou phase space. Although each particle may re- 
main in a large betatron amplitude of a hollow beam the 
ccni.roid of the bunch becomes zero due to decoherence, 
which limits the number of measurable turns. Another 
irrlport.ant. issue is the linear coupling, which may not de- 
st,roy the island but it will mess up the interpretation of 

nonlinear experiments. Besides. linear coupling is also an 
important topic in nonlinear beam dynamics experiments, 
where careful measurement of u, + u, = n resonance re- 
mains to be seen. 

The conditions for most of our experiments were h = 
1, B E -0.86, do = 0. Wr chose an rf voltage of 41 V to 
obtain a synchrotron frequency of about 262 Hz in order to 
avoid harmonics of the 60 Hz ripple. Sometimes, we chose 
IS,,,, = 540 Hz in order to improve the resolution of the y 
measurement. 

2.1 Transverse Beam Dynamics Experiments 

The Hamiltonian for particles encountering a single reso- 
nance. mu, + nv, = !, m 2 0. is given by 

H = Ho(JmJ,)+sJs!J? cos(m&+n~, -M+~) (I) 

where 9 is determined by nonlinear elements in t,he ac- 
celerator. The unperturbed Hamiltonian ll0. is given by 
HO(Jl,J2) = v,oJ,+v,oJ,+3a,,J,Z+a,,J,J,+for,,JI+ 
-. The Hamiltonian in the single resonance approxima- 
tion is integrable. Particle trajectories follow invariant tori 
of the Hamiltonian flow. 

A special class of the above Hamiltonian is a 1D para- 
metric resonance, i.e. mu, = P or nvL = E. Most pre- 
vious experimcnt,s [2-41 was set up to study these reso- 
nances, where stablr regions of phase space around st.a- 
ble fixed points (SFP) arc called islands. The beam was 
kicked onto a resonance island to study properties of the 
Hamiltonian flow. With a small ernittance beam, de.. 
tails of island motion could be studied. Fig. 2 shows 
the Poincark maps at the third order resonance condi- 
tion. The Hamiltonian for third order resonance is givru 

by, H = 6J, + +,,J: + @&$hx(3(& +x)), where 

dz is the betatron phase, 6 = v, - $, with e integer, and 

“‘~ “3p-d~ with W’ as the 2nd derivative 
?zFe ~&%c’~~d. The relat,ive magnitude of F and 

Q,r J$” determine the characteristics of the 3rd order res- 
onancr islands. For a third order slow ext.raction process, 
a small dctrming paramct,er and good linear coupling cor- 
rection are important in achieving high cfficirncy. 

The fourth order ID resonance data (inset) is shown on 
the left side of Fig. 3. Because of the linear coupling, the 
PoincarP map winds around fixed points of a resonance 
island. The linear coupling at the IUCF Cooler may arise 
from the solenoidal field at) the electron cooling section. 
Averaging the winding motion of linear coupling reheals 
an ellipse around an island’s fixed point. [4] Eliminating 
the linear coupling with skew quadrupoles, the right side 
of Fig. 3 shows the fourth order resonance PoincarC maps 
[4], which give greater precision in predicting the nonlinear 
Hamiltonian of the synchrotron. 

On the 2D vz-2v, = -6 resonance, Fig. 4 shows the char- 
acteristic t, 2 nonlinear coupling resonance data YS revolu- 
tion number. The corresponding FFT spectrum exhibits 
typical nonlinear coupling sidebands. Tranforming the 2D 
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Figure 4: The measured 1: and z position vs turn number 
are shown for the experiment at vz - 2v, = -6 resonance 
condition. The Poincarb map in the resonance frame is 
shown on the right. 

data in the resonance frame, i.e. (ficos91, asin $1) 
with di = d, - 2dZ, the Paincare maps in resonant frame 
becomes invariant tori. These data, shown in Fig. 4, was 
used to derive the 2D Hamitonian experimentally. [4] Al- 
though the aperture may be reduced because of the energy 
exchange bet,ween horizontal and vertical planes, the differ- 
cncc rcsonanccs are intrinsically stable. On the other hand, 
particle motion is unstable at a sum resonance, where the 
beam intensity becomes too low to make any meaning- 
ful measurement. A ferrite Panofsky quadrupole [7] was 
constructed to change the betatron tunes in 1 ps so that a 
bram bunch with reasonable intensit,y is tracked at the sum 
wsonitnw condition. Parts of our successful initial results 
at vr + 2vz resonance are reported in these prowedings. 

WI 

2.2 Longitudinal Dynamics Experiments 

Longit,udinal beam dynamics experiments are also impor- 
tant. The phase space coordinates, (6,6), with the nor- 
malized off momentum 6 = Vr 
tions, 

h y, obey the mapping cqua- 

OIL+1 = 6, + 2TV36, + Ap(B), (‘4 

6 IL+1 = 6, - 2nv,(l +A(B))sin&+l - $6,, (3) 

where the orbital angle 8 is used as the time variable, 
Ap(O) is the rf phase error, A(O) is the rf voltage error, 
and (t is the phase space damping coefficient due to elec- 
tron cooling at the IUCF Cooler Ring. The damping time 
for 45 MeV protons was measured to be about 0.4 set or 
(t = 2.5 SK’ at an electron current of 0.75 A. Thus N < wg. 
The rf phase and voltage errors can arise from the noise of 
power supply or external modulation in the rf system, or 
from synchro-brtatron coupling. The SB coupling is im- 
portant to electron storage rings, where the fractional parts 
of t,hr synchrotron and bet,atron tunrs arc of the same or- 
der of magnitude. For the SSC, where the synchrotron 
frequency varies from 7 Hz at injection energy to 4 Hz 

a41DInmm 
IL hw--Y IW 

Figure 5: The response of sinusoidal modulation to the rf 
phase for y and @ vs revolutions are shown on the loft 
frame. The measured peak amplitude and the modulation 
period is shown as a function of the modulation frequency. 

at 20 TeV, SB coupling may arise from ground vibration. 
At RHIC, the synchrotron frequency ramps through 60 Hz 
around 17 GeV/c for heavy ion beams, SB coupling may 
result from power supply ripple. 

To understand the dynamics of synchrotron motion in 
the presence of phase or volt.age errors, we examine first the 
Hamiltonian. Neglecting the damping term (a = 0), the 
synchrotron equation of motion. can be derived from the 
Hamiltonian, H = ~Y,~~+u~(~+A(@))[~-cos++]+~A~(~). 
Let us transform the phase space-coordinates, (O,S), int.0 
($,a) by Fz(d,a) = (4 - Ap(0))6. The new Hamiltonian 
becomes, N = f~,6’ + v,(l + il(S))[l - cos(d + Ap(Q))], 
where the potential energy term is now independent of the, 
momentum variable. The phase coordinate Q is relative to 
the revolution frequency. 

Consider now the case that both the phase and the volt- 
age errors are small and sinusoidal, i.e. Ap = ~a cos v10 
and A = E sin ~28 with a, E < 1. The Hamiltonian sys- 
tem can be expanded in terms of the action-angle of the 

- 7 
unperturbed Hamiltonian, i.e. J = & $6&. For our ex- 
periments with a small action, d < 2, the action-angle 
canonical transformation can be c&d out approximately 
by the generating function, F1(Q,$) = -$ tang with 
4 = &co,+, 8 = -msin$. The new Hamiltonian 
can be approximated by, 

H = Y~J - $J’+ AH,+~AH;;‘+~AH;$ (4) k=l k=O 
The corresponding perturbed synchrotron tune is given by 
fi, w ~~(1 -f), which is a good approximation to the exact 
synchrotron tune up to about J x 2.5. The nonlinear res- 
onance terms arising from the unperturbed Hamiltonian, 
AHo =v~[-~COS~~-~~~=“=,(-)~~~~(~)COS~~~J], are 
not important because v, < 10W3 is a small number so that 

the resonance condition occurs at 2kv, = integer with a 
large k, where the resonance strength, proportional to Jak, 
is very small. IIere J2k are Bessel fmlctions of the first 
kind. 

8 

PAC 1993



The Hamiltonian due to the external modulation induces 
parametric resonances at harmonics of the synchrotron fre- 
quency, i.e. 

(5) 
The resonances due to external modulation are some- 
times called parametric resonances. The resonances due 
to the voltage modulation are located at even multiples 
of the synchrotron harmonics and the resonances due to 
the phase modulation are located at odd synchrotron har- 
monics. When the modulation frequency, vI or v2, equals 
to the multiples of the synchrotron frequency, the coher- 
ent kick due to resonance condition dominates the beam 
dynamics. Making the canonical transformation to the 
resonance precessing frame with the generating function, 
Fs(7/‘, j) = (ti - 20 - &)j, the time averaged Hamilto- 
nian becomes, 

{ff) = (& - F)j- $j’ - u,fJ&“%) cos(n$), (6) 

where Jn is the Bessel function, f, aside from a possible 
& sign, stands either for a or E and u,,, stands either vr 
or vs. The particle trajectory will be located on the tori 
of the time independent Hamiltonian flow. The longitu- 
dinal Hamiltonian is therefore almost identical to that of 
the transverse resonant Hamiltonian of Eq. (1). Hereafter, 
we drop the tilde notation for simplicity. Since the Hami- 
tonian in Eq. (6) is time independent, it is a constant ot 
motion. The particle trajectories, obeying the Hamilton- 
Jacobi equation, 

J = - (7) 

4 = (us _ ““) _ $J - u-&F) cosn$,, (8) 
n 

are tori with constant Hamitonian values. The fixed 
points, which determine charachteristics of tori, are given 
by J = 0, 4 = 0. There are in general n stable (SFP) and 
n unstable (UFP) fixed points. (There is a possible extra 
fixed point at J = 0 arising from the unperturbed Hamilto- 
man). The Hamiltonian flow corresponds to a torus about 
an SFP. 

For illustration, we consider the lowest order parametric 
resonance at v, z v, due to the rf phase modulation. 
Using 9 = flcos@ with ti = 0 or t as the rf phase 
coordinate of the fixed point, the equation for 9 becomes, 

$3 - (I/8 - urn))) + $f = 0, 

which has three possible solutions at modulation frequen- 
cies below the critical frequency vc called the bifurcation 
frequency given by v, = v5[1 - &(~Lz)‘/~]. When the mod- 
ulation frequency is below v,, there are two SFPs and one 
UFP. Beyond the bifurcation frequency, only the outer SFP 
exists. 

L...I ..,. I ,I.. I .,., i 22 -/ 
“4 ’ 2 

t ,,.. 1..,. !..1.! ,.,, i ‘2.2 
vGc*s(J - U,“le, 2 

Figure 6: The response of the bunch at 42’ initial phase 
kick to the sinusoidal modulation at a modulation ampli- 
tude of 1.3”. The Poincare map of (h. 6) is shown on the 
left frame and the Poincard map in the resonance frame on 
the right 

At the IUCF Cooler Ring, we measured PoincarC maps 
of the beam with phase or voltage modulations. [5] When 
the bunch is kicked with an rf phase shift, the synchrotron 
tune, measured as a function of the synchrotron amplitude, 
was found in excellent agreement with theory. When the rf 
phase is modulated sinusoidally, the response of the bunch 
motion located initially at the origin shows characteristics 
of parametric resonant system (Fig. 5). The modulation 
period shown in Fig. 5 characterizes the tune of the motion 
about an SFP. The modulation amplitude characterizes the 
intercept of the torus with the phase axis. The peak re- 
sponse and the peak modulation period occur at the same 
modulation frequency, which reflects the condition that the 
separatrix of these two resonant islands pass through the 
origin of the rf bucket, which is the initial condition of the 
beam. Figure 6 demonstrates that the reduction of the 
Poincare map in the resonance frame revealing indeed the 
simplicity of the Hamiltonian flow of Eq. (6) from experi- 
mental data. 

The rf phase modulation may also arise from synchro- 
betatron coupling. For proton storage rings, the svn- 
chrotron tune is small, therefore synchro-betatron coupl”ing 
is usually not important. However dipole field modula- 
tion at a non-zero dispersion function location can change 
the circumference by AC = D,@(t). The corresponding 
rf phase difference becomes, A6 = 2&y. In our exper- 
iment, the maximum rf phase shift per turn was A$ = 
0.78 x 1O-5B,,, [Gauss] radians. Because the synchrotron 
frequency is much smaller than the revolution frequency in 
proton storage rings, the phase errors of each turn accu- 
mulate. The modulation phase amplitude is enhanced by 
the factor e. In this run, the injected beam was cooled . 
and simultaneously modulated by a small dipole. A win- 
dow frame ferrite dipole magnet was used to produce the 
transvese dipole modulation. [7] The horizontal dispersion 
function was D, x 4.0 m at the modulation dipole loca- 
tion. The result is shown in Fig. 7, where the inset shows 
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Figure 7: The inlet shows the t,race of signal from a wall 
gap nlonitor tr~ggcrrd by the rf frequency. The measured 
phase amplitude of the outer beamlet is shown to compare 
with t,he fixed points of the Hamiltonian. 

the trace of the bunch shape accumulated on an oscillo- 
scope. It appears that the beam split into two beamlets. 
The phase amplitudes of t,he outer and the inner bramlets 
twasured from the oscilloscope and digitized phase detec- 
tor are also plotted in Fig. 7, where lines are solutions of 
Eq (9). Because of the phase space damping due to elec- 
tron cooling. particles in thr phase space are trapped int,o 
the islands of t,he resonant Hamiltonian. These beamlet,s 
are observed to rotate about the center of the bucket at 
the modulat,ion frquencv. Results from similar measure- 
ments for the voltage modulation at v, x 2v, indicate 
that the beam split into three beamlets. The measured 
phasr amplit,ude of tht, outer bcarnlet agrees well with the 
fixed point of the Elamiltonian (6). Data analysis of these 
experiments will bc reported shortly. [5] 

3 CONCLUSION 

Rcccnt, advances in fast digitizing electronics and also the 
availability of small cmittance storage rings offer us the 
possibilit,y of long term t,racking of betatron and syn- 
chrotron motion. C‘ombinpd with rect-nt advances in nu- 
merical nonlinear beam dynamics methods of using the 
Taylor map, Lie algebraic and canonical perturbation t,ech- 
niqurs, nonlinear beam dynanncs experiments are timely 
and important in supporting, verifying and guiding t,hro- 
ries. Our experiments indicates that indeed a particle mo- 
tion in synchrotron obeys Han&onian flow. In part,icular, 
the lougit,utLinal phase space experiments reveals the sin- 
plicity of invarIant tori. They are simple and predictable. 
Our results can therefore be used to set the tolerance for 
higll energy accelerators on errors associated with rf volt- 
age and phase modulations, such as ground motion, the 
power supply ripple etc. 

The limitations of nonlinear beam dynamics experiments 
rest on 1) finite beam size, 2) decoherence of betatron mo- 
tion, 3) uncontroled tune modulation. These limitations 
reflect however a realistic storage ring environment,. The- 
oretical calculations are usually limited by its difficulties 
in predicting the realistic environment. Our next phase of 
experiments will begin with rf phase/voltage modulation 
to create longitudinal island structure and study thr par- 
ticle motion when a second harmonic modulat,ion at the 
island tune is applied. However, transverse beam dynam- 
ics remains to be our major focus. With a successful sum 
resonance experiment [4] by using the Panokky quadrupole 
for the tune jump, we will study 2-D resonances. We will 
not forget the survival plot either. All these experiments 
require careful planning and heam conditioning. Thcsc 
difficult experiments have just begun to take place. 
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