
Transverse Equilibria in Linear Collider Beam-Beam Collisions 

J.B. Rosenzweig 
UCLA Dept. of Physics, 405 Hilgard Ave., Los Angeles, CA 90024 

Pisin Chen 
Stanford Linear Accelerator Center, Stanford, CA 94309 

Abstract 

It has been ohserved in simulations of the beam-beam in- 
teraction in linear colliders that a near equilibrium pinched 
state of the colliding beams develops when the disruption 
parameter is large (D >> l)[l]. In this state the beam 
transverse density distributions are peaked at center, with 
long tails. WC present here an analytical model of the 
equilibrium approached by the beams, that of a general- 
ized Bennett pinch[2] which d evelops through collisionless 
damping due to the strong nonlinearity of the beam-beam 
interact,ion. In order to calculate the equilibrium pinched 
beani size, an estimation of the rms emittance growth is 
made which takes into account the partial adiabaticity of 
the collision. This pinched beam size is used to derive the 
luminosity enhancement factors whose scaling is in agree- 
nlent with the simulation results for both D and thermal 
factor A = (T,/,@* large, and explains the previously noted 
cubic relationship between round and flat beam enhance- 
ment factors. 

Introduction 

The calculation of the luminosity enhancement of linear 
collider beam-beam collisions due to the mutual strong 
focusing, or disruption, of the beams has been tradi- 
tionally calculated[ l] by use of particle-in-cell computer 
codes. These numerical calculations solve for clectromag- 
netic fields and the motion of the particles which generate 
these fields self-consistently. The emergence of near equi- 
librium pinch-confined transverse beam profiles in the limit 
that the disruption parameter D,,, = 2Nr*ear/~gZ,Y(gZ + 
~7~) >> 1 has been noted; in this regime the beam particles 
undergo multiple betatron oscillations during the collision. 
It is proposed here that these near equilibrium states are 
approached through collisionless damping due to mixing 
and filamentation in phase space, in analogy to a simi- 
lar phenomena found in self-focusing beams in plasmas[3]. 
The expected luminosity enhancement obtained in this 
state is calculated in this paper. Since the approach to this 
equilibrium ent.ails examining very nonlinear phase space 
dynamics approximations are necessary, especially with re- 
gards to the calculation of the emittance growth induced by 

filamentation. A model for this emittance growth, based 
on 0. Anderson’s theory of space charge induced emittance 
growth[4], is employed, which then allows a calculation of 
the luminosity enhancement which is in fairly good agree- 
ment with the values obtained by simulation. 

Maxwell-Vlasov Equilibria 

The equilibria we are proposing to study are of the type 
known as Maxwell-Vlasov equilibria, which are obtained by 
looking for a time independent solution of the Vlasov equa- 
tion describing the beam’s transverse phase space, with the 
forces obtained self-consistently from the Maxwell equa- 
tions using the beam charge and current profiles. We begin 
with a flat beam (a, >> by), as these are the simplest, and 
most likely to be found in a linear collider. For the purpose 
of calculation the beams are assumed to be uniform in 1: 
and L (at least locally), and have identical profiles in y. 

The vertical force on an ultra-relativistic particle is thus 

s 

Y 

Fy cc -24Ey) = -87re”& Y(Y’)dY’ 
0 

where Y, normalized by s-“, Ydy = 1, describes the verti- 
cal beam profile, and Cb = N/~~T(T,~T, is the beam surface 
charge density. We look for separable solutions to the time 
independent Vlasov equation 

afEz, ?L,,af=, 
at y 8Y YdPy ’ 

where tjy = p,l-fm, i.e. solutions of the fornl f = 

Y(YNP,). Th is f orm is in fact approached in true ther- 
mal equilibrium. In order for this equilibrium to de- 
velop through phase space mixing, more than one non- 
linear betatron oscillation must occur during collision, 
D, N 2m,C~a~/a, > 1. 

The solution to t,he momentum equation obtained in this 
manner is 

x2 x2 2 
J%d = dz exp b-21 

which is the Maxwell-Boltzmann form we should expect. 
The separation constant X2 = ym/c$ is inversely propor- 
tional to the temperature of the system. The solution to 
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the corresponding coordinate equation is 

Y(y) = ;sech’(ory), (Y = 47~e’C~X’. 

This profile is the one-dimensional analogue to the Bennett 
profile found in cylindrically symmetric Maxwell-Vlasov 
equilibria. The separation constant X2 remains to be cal- 
culatctl in this treatment. As a first attempt, one can 
use the fact that the distribution function at the origin in 
phase space is stationary, by symmetry, that is af/& = 0 
at (Y:~J~,) = (0,O). Thus f(O,O) is a constant of the mo- 
tion. Assuming an initial bi-Gaussian distribution in phase 
space, and equating its peak density in phase space to that 
of the 13rnnett-type profile found upon equilibration, we 
have 

f(O.0) = Y(O)P(O) = & 
n 

= (&b)Vp$ 

TVe thlrs have, solving directly for CY, 

8yr,& 1’3 (YE ~ I 1 62 n 
\Vith tllis relation we can compare the luminosity that 
comes about by the transition to a pinch confined Bennett- 
like state with that of the initial Gaussian beam. At this 
point, w(x IlIake allowance for the fact that the beams 
are not, ulliforrn in z and redefine & -+ (c~)‘/” = 
It/v% 7rurm,. 

Luminosity Enhancement 

The lurrlinosity enhancement due to pinch-confinement 
can be calclllated by taking the luminosity integrals of the 
two cases, assuming A, = a,/,/$ < 1, the depth of focus 
effcct#s can I)e ignored, and D, < 1, 

Following t11is I)rescription, the luminosity enhancement is 

Yrecb [ 1 - 1’3 = 32?r)‘/‘5 [ fk] 1’3 
62 n Y 

‘l’liis results I-)(_ t.lie computer simulation of luminosity en- 
hancelllc,nt, 1)~ C:lren and Yokoya[l] is reprinted in Figure 
1. Our cxpr(~.+ion clearly has too strong a dependence on 
D, and A, to model the simulation results correctly. This 
is bcrausc, CVCII though we have invoked emittance growth 
(phase spact: filn~nentation) as the mechanism behind col- 
lisionless allpr(Jtlch to equilibrium, we have neglected to 
calculat,t t,his i>lllit.tancc growth. 

The e:lllittallcc growth can be estimated by using a 
methocl dcvelop~~tl by Anderson to examine space-charge 
driven emittaucr: growth.[4] We begin by assuming lami- 
11ar flow of bcz1111 particles pinching down under the influ- 
ence of the opposing beam forces which, ignoring for the 
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Figure 1: Luminosity enhancement as a function of D, ant1 
A,, found by computer simulation. 

moment the time dependence of the collision, is assumed 
to be undergoing an identical pinch. The force on the 
beam particles can then be written in terms of the enclosed 
beam current, and thus the initial transverse displacement, 

F = -8re2&,G([), where G(t) = s,’ Y(y)dy is a constant 
of the motion under laminar flow conditions. The equation 
of motion for the beam particles is thus y” + I<([) = 0 
(’ E d/ds), where T<‘(E) = &r,&G(f). For small initial 
amplitudes < << fly we have K(r) = (87Tr,nb/Y)< E kg[, 
where nb = &/&a, is the beam density on axis. The 
solution for the small amplitude motion (which for small 
times is simple harmonic with wavenumber ka) is thus 
y = [[l- (kgs”/2)], and all of the small amplitude particles 

focus at the wave-breaking point &,b = fik,‘. At wave- 
breaking, which corresponds to one-quarter of a beam os- 
cillation, and after which the laminar flow assumption is 
violated, the rms emit,tance has grown explosively and can 
be calculated (assuming an initially parabolic beam profile 
of rms beam size cY) to be 

r, Nay 
At2 = (~)~(y’)” - (yy’)2 2: $r; ycr [ 1 

2 

z 2 
In fact, not all of this growth can take place, as the ini- 
tial focusing occurs as the beams see a time-dependent, 
adiabatically increasing focusing strength. The ernittance 
growth occurs on a length scale of ki’! but the beam 
rethermalizes in a length /3Z; due to t,he nonlaminar effects 
of the finite emitt,ance. Thus we must divi e our emit- 
tance growth factor by kp,b’G = (2/7r)lj4 

e 
D,/A:, and in 

the spirit of an rms treatment, add it. in squarrs wit.11 the 
initial normalized emittance c,o 

The adiabaticity scale lengt,h of the collision is 6, and the 
initial depth of focus, or retherrnalizat.ion length, is &, so 
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Figure 2: Luminosity enhancement, as a fuuctior; 01' ii,. 
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Figure 3: Luminosity enli~~ucelllent as a function of A,, 
113 mult,iplied by scaling factor A, 

we must require for this model to hold that A, be not too 
much smaller than unity. 

Given this emittance growth factor, we can now calcu- 
late the luminosity enhancemenb factor to be 

In t,he limit of applicability (Dy >> 1, A,, 5 l), this re- 
lation approaches H(Dy,Ay) 21 0.8(Dy/Ai)1/6. This re- 
lation yields scaling which describes the relevant data ob- 
tained in simulations quite well, as illustrated in Figs. 2 
and 3. Quantitatively, one expects the best agreement 
when A, and D, are largest, and for D, = 100, A,, = 0.8 
the simulations give H(D, , AY) z 2, while our scaling gives 
H(D, , ,qy) ci 1.86, which is in decent agreement. 

The fundamental quantity which governs the luminosity 
enhancement is evidently fl/Ay z ‘cp&. The choice 

of D,, which is the square of a wave-number, to parame- 
terized this oscillatory interaction is perhaps unfortunate, 
and is a historical artifact. 

Round Beam Enhancement 

The emittance growth process for the disruption of round 
beams, is beyond the scope of this short paper. The results 
of such a calculation have the same scaling as the flat beam 
case. We thus confine ourselves to considering, for the pur- 
pose of comparison to the flat beam case, the luminosity 
enhancement in the absence of emittance growth. 

Following the treatment in Ref. [3], the Bennett profile 
of the pinch-confined beam system is 

R(r)- [I +(~/a)"]-~, 

w!lere a2 = 2fz/y~, where the Budker parameter v = 
N 1*~/2&%~ (we have again taken the rms value of the 
charge density). The luminosity enhancement obtained in 
this case (not including emittance growth ) is 

uf D D 
H(D,A)= 3a2 = 

&/‘%A2 - 2. 

By comparing this to the equivalent flat beam expression, 
we see that 

113 
Hflat - Hroun,j, 

a relationship which has been previously deduced from the 
simulation data[l]. This is further confirmation that our 
model incorporates much of the relevant physics of beam- 
beam disruption. 

References 

[l] P. Chen and K. Yokoya, Phys. Rev. D 38, 987 (1988) 
and P. Chen, in Physics of Particle Accelerators, Ed. 
M. Month and M. Dienes, 633 (Alp, New York, 1989). 

[2] W. H. Bennett, Phys. Rev. 45, 890 (1934), and Phys. 
Rev. 98, 1584 (1955). 

[3] J. B. Rosenzweig, P. Schoessow, 13. Cole, W. Gai, C. 
Ho, R. Konecny, S. Mtingwa, J. Norem, M. Rosing, 
and J. Simpson, Phys. Fluids B 2, 1376 (1990). 

[4] O.A. Anderson, Particle Accelerators 21, 197 (1987). 

3227 

PAC 1991


