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Some questions of ion beams lnteractlon 
wlth RF and electrostatic fields In a 
linear undulator accelerator (llneondutron) 
with the plane undulator are consldered. 
It 1s shown that In a llneondutron slmul- 
taneous acceleration of oppositely charged 
particles wlth the ldentlcal charge-to-mass 
ratloo for ex, H+and H-) may essentlally 
increase the overall beam lntensltg up to 
a few Amp. 

1. IN!PF(ODUCTION 

An idea to appls undulators for 
acceleration of relatlvlstlc beams ln a 
plane electromagnetic wave was dlscussed 
more than once. Various mechanisms and 
acceleration schemes were proposed to acce- 
lerate electrons ln magnetostatlc undula- 
tors and their descrlptlon can be found 
In Refs. [ l-3 1. The slmllar principles can 
also be used for acceleration of non-re- 
latlvlstlc lon beams 141. In thls case for 
low innjectlon energy it 1s advlsable to 
replace the magnetostatlc undulator by the 
electrostatic one. The configuration of pe- 
rlodlc electrostatic field can be chosen 
so as to provide an effective transverse 
particle r0cmng wlthout applying addltl- 
OIlLil external fields 151. 

In this paper we discuss one of the 
posslble versions of such linear accelera- 
tor, ln which the rlbbon ion beam 1s 
accelerated In the transverse RF- field 
and the field of a plane electrostatic 
undulator. The required field dlstrlbutlon 
1s achieved by the approprlate system of 
electrodes, mounted ln a resonator and dc- 
lsolated between each other. Roth the RF- 
and electrostatic potentlals are supplied 

to adjacent electrodes, forgng the accelera- 
tlng channel (indicated by U and U, ln rig. 1 

The Fll?-frequency corresponds to the undu- 
lator space period D. Once influenced only 
by the W or electrostatic field , the 
particle travels along the dotted curve 
In fig.. and, as lt 1s evident, its energy 
remains constant. If both the fields slmul- 
taneously influence on the charge, the 
particle energy doesn’t vary ln the trans- 
verse dlrectlon and Increases ln the lon- 
gitudinal dlrectlon. The corresponding elect- 
rostatlc field lines and particle trajec- 
tory Ln a combined-wave field are lndlcated 
ln R.g. by the solld llne. 

2. PARWCLE MO!CION EQUA!PIONS 
In a llneondutmn scheme proposed a 

plane electrostatic undulator 1s combined 
with the W-system. The electrode posltlons 
def lne the values of the fundamental space 
harmonics: the eero RF-field harmonic and 
the first electrostatic field harmonic, 
which are the working ones In our case. 
Higher harmonics values , ln turn, depend 
greately on the electrode shape and size. 

The field strengthes ln the perlodlc 
system lnvolved can be represented as 
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where av= eEvA/21nnc2 and ao= eB,h/2xmc2 - 
the dimensionless amplitudes of the zero 
RF-field harmonic and the 1-st electrosta- 
tic field harmonic, A-the RF-field wave- 
length, p,=D/h-the synchronous particle velo- 
city, 6i?cct/h. i+&(nM ), g2m-, (mZ)-the nor- 
malized higher harmonics smplltudes, which, 
as well as the fundamental ones, are non- 
syncronous with the beam, k=2?c/D(z) - the 
wavenumber. 

E5y USN the smooth approximation me- 
thod one may derive the expression for 
the effective potential, 
raged particle motion 

descrlblng the ave- 

U e&Jo+AUv (2) 

3 

where Uo=a~ch(2p/&,)/4 -avaoch(p/~,V2 +a74 
the potential due to fundamental harmOnlCS, 
AU -an fddltlon due to the higher harmo- 
nlcs, (p=4d~/~s-~+~0- 

d 
the 310~ varying me 

Ln a combined-wave f leld, &?7cZ/A and p= 
2%Y/h- the normallzed longltudlnal and tran- 
sverse coordinates In the smooth approxl- 
matlon. 

Correspondingly , the averaged motion 
equations can be wrltten as 

d2t 0 Ueff d2P i3 %rr -=- -; -=-- (3) 
d$ SE d6 i3p 

3. PA!% AND TRANSVERSE STABILITY CONDITIONS 

Conslderlng the higher harmonics, we 

may restrict ourselves by the harnoonlC& 
nearest to the working ones. Then near the 
Injection plane ( p =0 ) the first eq. (3) 
yields: 

d Bz b’, 
-= - (l+A) coscp. (4) 
d = 28, 

where Eo=ao av, a = av /a,, A= x2 12 + 
at+ g3 /18- 2 a af?2 sin cp. When neglecting 
the higher hamonlcs, the acceleration rate 
IS proportional to a0 8~. An appropriate 
choice of the functions a,(E), av(E) and 
q&j) turns out to supply an effective 
bunching and acceleration 0r the beam. If 
A=0 and p = 0. the potential function 
has the only mlnlmum at the polnt (p”p,. 
When % increases, the syncronous particle 
energy decreases, as a rule. At the same 
time the phase and momentum stablllty regl- 
on grows. With the further increase of a$ 
the second mlnlmum of U,ffe as well as 
the second separatrlx appear. In that case 
the mlnlmum at ws becomes less pronoun- 
ced and gradually disappears. 

From eq. (3) one map obtaln the condi- 
tion of the transverse particle focusing. 
Taking lnto account the fundamental harmo- 
nics, we get 

2 ch (2~43,)w ch (@,)sln cp. (5) 

When a aLnrp < 2 for the particle fase cp 
U eff(P) has one mlnlmum at p=O. If a slnq 
> 2, an lntermedlate maximum at p=O appears, 
and at p=fpo, where p. is a root of the 
equation ch (p /&)= a sin (p/2, two mlnlmums 
take place. Thus, two stable trajectories of 
the beam, splltted spatially and located 
outside the plane p=O. appear. The particle, 
depending on its Initial condltlons, can 
be placed on one of such trajectories, and 
the beam - splltted Lnto two beams. what 
is undesirable. 

Taking into account the effect of the 
higher harmonics on the transverse beam dy- 
namics doesn’t change slgnlflcantlg the qua- 
lltatlve picture, described above. However, 
the stability conditions are defined from 
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more compllcatlon equatlon. The analysis of 
the expression for AU showed, that with the 
increase of % the transverse osclllatlon 
frequency wy decreases, and the focusing Is 
worsed. Inversely, at g3 < 0 with the In- 
creased I&j1 (A$ grows. 

4. ACCgl;gRBTIION OF QUASI - NBU!?JRAL BBAMS 

All the results, obtalned above, re- 

late to acceleration of both the posltlve 
and negative ions. An interesting proper- 
ty of a llneondutron is that it doesn’t 
dlstlngulsh between them. The acceleration 
equations are independent of the sign of 
charges. Therefore, under the identical ratlo 
(z*/ M)(ror 8x.. H+ and H-)and the same ln- 
jectlon condl t ions bunching and capture 
processes occur at the same resonant ra- 

se. Thls can allow accelerating overlapping 
posl tevelf and negat lvely charged ion bun- 
ches , thus avoldlng space-charged effects 
and Increasing overall beam Intensity. Such 
bunches can be made practically neutral. 

The dynamics of lntense beams, inclu- 
ding space-charge effects , can be analyzed 
ln more detail only by means of exact nu- 
merical integration studies. Numerical re- 
sults conflrm the conclusions, made before 
analytically. For the quasi-neutral. bunches 
the results, obtained ln a single- charge 
approxlmatlon, are found to be close enough 
to those obtained whlle taking lnto ac- 
count lntrlnslc quasi-static beam fields. 
It takes place , even lf the trajectories 
of the oppositely charged particles don’t 
completely overlapp in the transverse cross- 
section. 

The corresponding choice of the funda- 
mentaland higher field harmonics enables to 
provide the focusing of quasi-neutral bunches 
in that case, if it exists for a slngle 
part lcle. The electrodes may have circular or 
rectangular profile. Calculations show that 
under the geometrical sizes of electrodes, 
normally used ln practice, the harmonic 
amplitudes range as follows: i+=o+o.2, g3= 
-0.3 + 0.3. 

5. CONCLUSION 

Slmulatlon results of the beam dyna- 
mics and detailed study of formIng the re- 
qured fields showed, that it is possible 
to create a llneondutron with a final energy 

of about 1 Mev. For example , the parameters 
of H+and H-accelerator with an Injection 
energy of 50 kev, RF- generator frequency of 
150 ME& were calculated. The accelerator In- 
cludes bunching and acceleration sections. 
On the former the field amplitudes gradu- 
ally increase, and the syncronous fase de- 
creases by the linear law. On the latter 
these dependencies are chosen constant. The 
maln accelerator characterlstlcs are the 
roiiomg: average acceleration rate - 0.55 
Mev/m; capture coefflclent- 0.8; transversal 
acceptance = 0.1 cm.mrad; RF- and electrosta- 
tic field amplitudes - 180 kV/cm and 65 kV/cm 
respectively; mlnlmum half-size of the rlb- 
bon aperture - about 4 nnn. 
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