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Ahstract 

We have successfully installed a nonlinear magnetization 
model in the 2 1/2-D finite difference (FDTD) elccuo-magnetic 
(Eh4) code AMOS. We have developed a procedure for 
mapping the 3-D induction cells on the 2-D AMOS mesh. 
These tools will bc important for modeling advanced induction 
accclcrator cells. 

I. INTRODUCTION 
Many future applications of induction accelerators (IA) 

require high quality beams and, in particular, rather small 
variation in beam cncrgy. For heavy ion fusion (HIF) beams 
it is necessary to have an energy variation less than 0.1% so 
that the beams can be focussed to a small enough spot on the 
fusion target.[l] One of the key components in determining 
the energy variation of an IA beam is the ferrite or Metglas 
core in an induction cell. The rime dependent switching of 
these magnetic materials determines, in part, the variation of 
the cell gap voltage. In order to shorten the iteration time for 
design of and expcrimcnts on induction cells, there are several 
efforts to incorporate non-linear magnetization models in finite 
difference codes for calculating this time varying switching. 
One approach is to trcatmcnt the core as one or a few lumped 
variable inductors in a circuit model. This approach is surely 
appropriate for relatively small cores, but may not properly 
reprcscnt the passage of switching frons in large cores. The 
induction cores for HIF require moderate to high gap voltages, 
often for several microseconds, and so require many 
volt-seconds. For example, an upper limit applied to linear 
induction acceleramrs for HIF is about 0.5 volt-scconds/m[2], 
and so, for a cell separation of less than about 5 m at the low 
energy end and a maximum magnetic field swing of 3 T, HIF 
cores can be as large as 1 m2 and have dimensions which are a 
large fraclion of a meter. We have, therefore, undertaken to 
install a non-linear constitutive model in a 2 1/2-D , FDTD 
EM code, AMOS. WC describe in this paper the non-linear 
model, its incorporation in a 1-D test-bed, its incorporation in 
AMOS, and a tcchniquc for mapping 3-D geometries onto a 
2-D calculational mesh. 

II. 3-D GEOMETRY REPRESENTATION 
Induction cell are driven with a small number of cable feeds, 
typically two, in a gcomctry which is intrinsically 3-D. 
A;LIOS uses a 2-D mesh. In order to calculate the switching 
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of an induction cell, we developed a technique for rcprcsenting 
the 3-D geometry in a 2-D axisymmetric mesh. We have 
represented the coaxial drive cables by a washer-shaped object 
spanning the region between the inner and outer radii of the 
core. Its conductivity was chosen so that its impedance 
matched the parallel impedance of coaxial drive cables (and 
related load matching resistors). We have tested whether such 
a washer would properly describe the scattering of 
axisymmetric waves (azimuthal mode number, m, of zero) by 
conducting calculalions of scattering at the junction of three 
coaxial cables with two of the three cables zoned in the AMOS 
mesh and the third represcntcd by a washer with an equivalent 
impedance. The analytic solution for the three coax junction 
is an elementary application of S-matrix theory, and AMOS 
correctly predicted both the transmitted and reflected waves. In 
the AMOS grid of the ETA II cell, we put a current source in 
the mock feed in order to provide an equivalent drive and were 
able to reproduce simultaneously the experimentally observed 
voltage and current histories of the ETA II cell. 

III. NONLINEAR cowrrru-rIvE MODEL 
M. Hodgdon 131 has developed an empirical nonlinear 

constitutive model, whose equations appear below: 

p-l =crsign(B) [f(B) - ;I] + g(B,k) (1) 
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The permeability, CL, is a function of B, H, fi, and the 
direction of the traversal of the hystersis loop, that is, the sign 
of B. This formulation permits the consideration of major and 
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minor hysteresis loops. The function “f’ is the inverse of the 
anhysterctic curve, and P, Al, A2, and A5 are its fitting 
parameters. For IBI beyond Bbp, the slope of f is simply the 
saturation permeability of the Metglas, vs. As IBI approaches 
BCI, the two halves of a hysteresis loop close at a rate 
determined by Aq. For IBI greater than Bc], the two loops are 
merged. In typical parameterizations, B,l and Bbp are nearly 

equal. For the DC hysteresis loop, g is zero, c is 1.0, and the 
width of the loop, twice the coercitivy, H,, is determined just 

by the parameter A3. For a pulsed hysteresis loop, i is not 
zero, and the width of the loop is c times the width of the DC 
loop. For most of the ferrites and Metglas under 
consideration, we have used piece-wise linear fits for c as a 
funclion of n. 

IV. 1-D FDTD SOLUTION TO MAXWELL’S 
EQUATIONS 

Before installing this constitutive model into AMOS, we 
first tested it in a one 1-D test-bed. The test-bed used 
equations numbered (5), (6), and (7), which advance Maxwell’s 
equations in a leap-frog scheme[4], and are substantially the 
same diffcrcnce equations as those in AMOS. In the test-bed, 
we considcrcd only the components E,, B,, and Hy. 

k+’ k~i 

At AZ (5) 

ll~-$H~~ = ;: 
1 

$34 - l$) 
2 2 j= l I(q+;( l(+.. - l~~j),Hpi~~~) : (s) 

Propagation is in the z-direction. The time index is k, and the 
z -index is i. The time step, At, is selected to obey the 

Courant condition, that is, that At < Az 6, where AZ is the 
zone size, In this trcatmetit, B serves as the independent 
variable advancing H via the permeability given by the 
constitutive model, CL as a function of B, H, and g. Eq. (6) 
provides for n steps of sub-cycling in advancing H over each 
dB step on the hysteresis curve. In this sub-cycling, i is 
approximated as constant. In the I-D model, we treat the 
conductivity of the Metglas as zero. 

In addition to the formulation of the constitutivc model 
shown above, we also tried a formulation in which all 
derivatives arc kept continuous at Bbp and B,l by smoothly 
joining the halves of f and g above and below the critical 
points. b!‘c found that so long as we limited the value of p to 
fall M,ithin the range ps to about 105~o, WC could use the 
simpler f‘ormulation of equations (5), (6), and (7). ‘The limit at 
the higIl end prrcvcnted infinite slopes in the hystcrcsis curve 

(“back-bending”), which could generate pernicious numerical 
instabilities. For permeabilities below the lower limit, the 
Courant criterion would be violated, and, again, the solution 
would become unstable. 
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Figure 1 History of B in a thin sheet of Melglas as calculated 
in the 1-D test-bed. 
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Figure 2 B-H curve for the 1D calculation of figure 1. 

Sample results from 1-D test-bed calculations appear in 
figures 1 and 2. Both the plot of B versus time in figure 1 and 
the hysteresis switching curve of figure 2 have been taken 
from a calculation in which a plane wave impinged on a thin 
(1 cm) sheet of 2605X Metglas. The right-hand-side (RHS) 
boundary conditions (BC) behind the Metglaq sheet were those 
of a perfect conductor; we used a radiation BC on the LHS 
behind the source. The DC parametcri;ration of the 26OSSC 
Metglas is a modification of a parameterization provided by M. 
Hodgdon.[5] The Ci and ii parameters dacribing the 
broadening of the hysteresis loop are taken from data of 
C. Smith of Allied Signal.[6] The two features in the model 
parameterizations which WC were most careful to prcscrvc 
were the magnetic induction at saturation and the variation of 
cocrcivity with B. In this particular calculation, the sample 
was so small and the time scales so long that each of ten 
Mctgla~ zones had nearly identical histories. 

In the course of testing this magnetization model, wc found 
that calculations with sub-cycling give virtually identical 
results to those without it. WC therefore have not included 
sub-cycling in the implcmcntation in AMOS. The use of the 
magnetization model did increase the running time, bum not b) 
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a prohibitive factor. Without the nonlinear model, the CPU 
time on an XMP CRAY spent per zone-time-step in a 
vcctorized version of the code was 3.5~s. With the nonlinear 
model coded “inline” (that is, written in the same routine with 
differential equation solver rather than called as a subroutine - a 
procedure used to enable vectorization of the nonlimar model), 
the CPU time per zone-time-step was about 6 J.LS. 

V. IMPLEMENTATION IN AMOS 
The AMOS code is a 2 1/2-D EM simulator for USC in the 

design of accelerator components.[7] It is 2 1/2-D in that it 
u3es a 2-D r-z mesh, but assumes a harmonic variation of the 
fields in the azimuthal (Q) coordinate. The user specifies the 
azimuthal muitipole number (m) at run time, and AMOS 
ahws spatially varying materials and a variety of BC’s that 
support component design. 

The imp+cmentation of the no&near model in AMOS was 
nearly the same as shown in eq. (5), (6), and (7) except that we 
Bid not use sub-cycling. Only the azimuthal components of 
magnetic induction and intensity were linked by the nonlinear 
model. To represent the insulation between the layers of 
Pibetglas winding, we introduced an option for anisotropic 
conductivity such that the conductivity in the radial direction 
was zero and the conductivity in the azimuthal and axial 
directions could be independently chosen. 

In the test problems we have so far conducted with this 
model in AMOS, we have examined exclusively the m=O 
azimuthally symmetric mode. We have configured the 
Metglas as a large torus around a central conductor and bounded 
by conductors on the back, RHS boundary, and on the outer 
radius. On the LHS, we had a dielectric material. We placed a 
magnetic current source (an additional term in the curl E 
equation) on the LHS of the dielectric material and a radiation 
BC on its LHS. In this manner, any reflections from the 
Metglas propagating to the left could leave the mesh. In the 
particular calculation depicted ir+ figures 3 and 4, the Metglas 
torus was 10 cm kmg and had an inner radius of 19 cm and an 
outer radius of 3 1 cm. The temporal history of the source was 
a Gaussian arising to a peak at 600 ns, at which time the 
calculation was terminated. Figure 3 shows the B-H curves for 
points at inner and outer radii on the LHS of the Metglas. 
Because the time derivac)ve of the magnetic induEt.& is 
smaller at the ouber radius, that point has a lower coercivity 
than the point at smaller radius, but it was not driven as fully 
into saturation because of the lower peak H-field. This 
calculation was performed witpP zero conductivity in all 
directions, and so the Metglas could support a small axial 
electric field, as shown in figure 4. Because of the TEMoo 
tiure of the drive, it excited neither radial mr axial 
compone.nts of magnetic induction. As expected, the radial 
electric field was much larger: it rose sharply during the period 
of large I[i, peaked as the Metglas began to enter saturation, and 
then bqan to fall. 
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Figure 3. B-H curves from AMOS calculation of a Metglas 
torus 
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Figure 4. E fields from the AMOS calculation in figure 3. 

VI. CONCLUSIONS 
We have successfully installed a nonlinear magnetization 

model in the 2 1/2-D FDTD EM code AMOS. We have 
developed a procedure for mapping the 3-D induction cells on 
the 2-D AMOS mesh. 

Future work will entail using this model for investigating 
several proposed HIF induction cells. We expect to install a 
simple vector analogue of the scalar magnetization model in 
AMOS and will latter implement it in a 3-D version of 
AMOS which is presently under development. 

We gratefully acknowledge the help and advice given by M. L. 
Hod&n, LANL, and C. H. Smith, Allied Signal. 
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