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Abstract 

To achieve the enormous luminosity required for B facto- 
ries it is necessary to increase the factor Ito /&. We have 
investigated the possibility of decreasing ,L?;, using locally 
shortened bunches. The lattice and optics were designed 
to accommodate the CESR tunnel. The beam-beam in- 
teraction was simulated for the following conditions: finite 
bunch length, longitudinal beam-beam kicks, and cross- 
ing angle collision geometry. Estimations and simulations 
show that using a method of local bunch shortening, it 
is possible to design the “after 10”‘” generation of e+e- 
colliders with luminosities z 10”‘. 

Introduction 

The next step in the development of extra high (- 10”‘) 
luminosity for e+e- colliders can be made by decreasing 
both 3; and (TL to the order of 1 mm. This step seems 
to be expensive and technically difficult but not unrealis- 
tic. In this paper, we have tried to explore the practical 
possibilities of a theoretical design of local bunch compres- 
sion [I] that permits us to have a normal bunch size, ‘TI., 
outside of the IR. 

The basic idea of local bunch compression is first to de- 
liver a powerful kick to the particles, producing a horizon- 
tal angle Ax’(s) that depends on s, the longitudinal coor- 
dinate of the particle; and then to send the particles into 
a bending magnet, so that those with different s will move 
along different trajectories and will be focussed longitudi- 
nally. One needs for this a set of deflecting RF cavities and 
a rather large horizontal size Ax of all focussing elements: 
Ax - lOa,, (R/t’), where t/R = 4 is the rotation angle in 
the magnetic field. The further transverse focussing into 
the IP also requires a set of large and powerful elements, 
not only because of a small a;, but also because of a large 
horizontal ernittance, e;. In this design there is a chain of 
transformations between the entrance to and the exit from 
the interaction area: 

6 I‘ -* E; - t1,; f* --$t; --+ er; e;, << EL. (1) 

It is convenient and probably useful to design this system 
in such a way that bunches will have a disk-like shape 

’ \\.,,J k .5t~pp~,, ted b\ tile Sdtiultrll 5~ ~CII(.C, I..3rllldcitit.rL 

Figure 1: Lattice for Bunch ShLmr::ning 

at the IP: u;, z cr; (and 0;. = 9,; ). S:ch “disks” are 
almost insensitive to the crossing and c:abbing angles. 
Besides that, if the lattice is designed properly in this 
system, the horizontal oscillations of the particles are al- 
most insensitive to the beam-beam perturbations. The I- 
oscillations are perturbed only by longitudinal bean-beam 
kicks, which are relatively \reak. Horizor,:al beam-beam 
kicks produce only longitudinal perturbati:.ns. 

Our rough design and preliminary simuiations (without 
taking into acount the errf.srs of the lattice <how that such 
a project is not unfeasible. 

Lattice for Bunch Shortening 

Fig. 1 shows the lattice needed for local bunch shorten- 
ing. Particles first pass the thin defocussir, lens, d, \vhich 
eliminates the dependence of u;, on u,, 

f % g (k)’ (1 + L) (2) 

where l/R = 4 is the angle of the bending magnet men- 
tioned above, b is the full strength of the deflecting RF 
cavities C (fig. 1) 

and I is the strength of the triplet .-I (fig. ! 1 of quadrupole 
lenses FDF with phase shifts r/-l, 3~12. 1;,‘4, with 2 x 2 
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Here I, .X exp (SK/~) .,,/77$!j,~, and ?? in (2) is the radius 

of the magnet (with an inverse field) next to lens d. This 
magnet eliminates the dependence uf oj, on C; ; its (inverse) 
angle ~7 and 4 x 4 matrix Al are 

z ;-. J z ” (9 ~,Sir92 << 1, 

K L sin 4 (5) 

.-Ly 

0 1 0 (6) 

u 0 1 

‘I’he main magnet, &I, whose matrix is 

i 

cos ip R sin @ 0 R ( 1 cos 4) 

!\I 
sin d/H cos d, 0 sin C#J 

~~ sin 4 -R(l co,&) 1 K (4 ~ sin $) 
0 0 0 1 

(7) 
transforms CC deviations (which now depend on s after a 
particle has passed through the triplet A) into the devia- 
tions of s, 

As:-- - J dz x (2) /R. (8) 
II 

Finally, lenses 711 form the dispersion function 9‘ at the IP 
(taking inta.1 account a given f~~cussing systeni between m 
and tfrc 1 I’), ant1 lenses N form the dependence of c;, on 
u,, ,. (All sizes F1, 0,,,, (T,‘, CT< are given at the entrance of 
the lattice.) 

~‘lultipl~~ing all matrices, including the 4 x 4 matrix of 
the RF cavit,,y, 

(9) 

ae get the matrix for the transition from the entrance of 
t hr Iat t,ice to the IP in the horizontal plane: 

0 rj’ 
--T/7]‘ l/7)’ 0 

0 0 (10) 

0 1 

/ -~T,,7/- 0 0 I’ \ 

.s ' i 0 0 -l/T 0 

0 ‘ ~~ 7) 1 u 
l/7/’ 0 0 0 I 

(11) 

‘I’hc remarkable feature of the S-- ’ matrix is that it cancels 
thr: influence of the horizontal bean-beam kicks (a.~‘)- on 
t hc- s-movrrnrnt (ST,’ -: S,’ 1. 0). The kick (6~‘)’ itself 
depends on y* and on the deviation Ap,~‘p at the entrance 

of the lattice, because, according to (IO), S,, 1: S,:i := 

s13 = 0, s,., = q-, and the rc’-coordinates at the 1P 
depend only on Ap/p. Therefore, kick (b.~)(~~, depends 
only on (~Ip/p)~,~~~~~,~,,,,: and y.. The z coordinates link 
with the longitudinal coordinates through relatively small 
longitudinal kicks (Ap/y)^ (Sl,’ ~ T’ j 0). Four deflecting 
cavities with XIi,.~ = 0.6 m can give 6 2 1.5 A lo--’ U- ‘. 
With L z 100 condition (3) gives sin $5 Of;:). l,Vthell R 

40 m, I = 26 m. When c., ~~1 10. ’ and c ,, (I. 25 :/ 10 “. 
g, < 1 cm and (T,,, < 1.5m7n over the entire lattice. If 

Ul, = 0.5cm and gE = 5.5 x 10 ‘, then c; 2.75 ‘r 10 ( : 
cz=1mm,and a;=5x 10.’ m. 

Interact ion Region Optical Design 

There are two very challenging problems in designing in- 
teraction region optics with pi -- 1 mn~ controlling the 
vertical chromaticity, and providing aperturt, for a large 
horizontal emittance. High chromaticity causes a reduc- 
tion of the range of energies with stal)lr foclrssiug. In- 
directly, it causes a reduction in the dynamic aperture 
through increased sextupole strengths that arc’ required 
to compensate for the chromaticity High chromaticitg is 
basic to all millimeter ,Bi optics for 13 factvrics; focussing 
magnets simply cannot be made strong enough or fit close 
enough to the interaction point. The vertical I)eta function 
grows so rapidly with distance from the interaction point 

(P!, z s”,/j?i) that th e contribution 11, thr vertical chrc- 

maticity, A& = k j’Kf3,,ds becq.lmcs very largr. Peak ,3!, 
of 500 733 or more arc unavuitiablr fiivc,li a ‘dctc-ctl.Jr sta\ 
clear’ cone of half angle U.3 I.CL~ZU~LS, an iutcractiuil point 
beam pipe radius of :: 2 C‘I,L, aiiti 1 ht. lili~itb G 11’ rflagllc,tii 
materials. 

\ The problem of finding an adequate apc’~ ture for high 
horizontal emittance is specific to the schcr~le described 7n 
this paper, where the horizontal t:mitt.ancc is locally en- 
larged in order to shorten the bunch length. An example 
of an engineered conceptual design of magnetic elements 
and vacuum chamber that would provide a 1 7~7~ ,L$ is 
given in figure 2. The horizontal stay clear criterion is 

.~.S~~;l,~CI,I).Lli :m] :- lOa,, - .005&7rr~]/4O and is the 
same as that used in the Curnell f3 fact<)ry tlrsign. l‘he ver- 
tical stay clear criterion is Y,,; i! (‘1 , ,ii .f >l I) ( II.’ I/;. 
The latter was chosen because thr large tucal horizontal 
emittance dominates the aperture. ln this iriteracticin re- 
gion design, the contribution tu vertical chrornaticitg from 
each side of the interaction point is 62. With such a 
large chromaticity, adequate singlr bcarn stability is dc.)ubt- 
ful. There are a couple of ideas that could be used to 
reduce the effect of the chromaticity. One is to put sex- 
tupole components OIL the windings c,f the suprrconduct- 
ing quadrupoles. i\lthough thcyrr i’; no cr.~rlvcntion;tl 71; ) 
the effect of the bunch cuntprcssioll (11): ic:, \\ould cv~relat~ 
energy with horizontal position and ~tlllltl tx nsd t,o cam 
ccl the chrornaticity tuneshift l~~callv. ‘I‘ll? Nt,her. idea is 
to “tune out” the chrumaticitv using it scrivi ol’optimizod 
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Superconducting 7 
Electrostatic Electrostatic 
Separator 7 

Figure 2: The interaction region quadrupoles and vacuum chamber are designed for 1 71~71~ pi 1 a crossing angle of Figure 2: The interaction region quadrupoles and vacuum chamber are designed for 1 71~71~ p,c 1 a crossing angle of 
3~16.6 milliradians, and a (local) horizontal emittance t, = 3~16.6 milliradians, and a (local) horizontal emittance t, = Z.‘i5 x lo-.” m. The electrostatic separat~rr is used to Z.‘i5 x lo-.” m. The electrostatic separat~rr is used to 

further separate the beams into separate vacuum chambers. 

quadrupoles. 

Program Description and Simula- 
tion Results 

In the simulation we have used 10” “particles” per bunch 
executing 5 x 10” turns. Only the symmetric case (equal en- 
ergy beams) was considered. When treated as the “strong” 
beam, every bunch was divided into several equally charged 
slices.We have developed the basic program used in [2] for 
the flat beam in the following respects: 

(a) Strong-strong collisions, in the approximation of un- 
perturbed bunch shapes during a collision. In reality, the 
relative perturbation of vertical bunch size during one col- 
lision is about lo-“. 

(b) Longitudinal kicks, ~E/E. They are essential in this 
design even without a crossing angle because of the rela- 
tively large angles gz,, u?J#. In the presence of the crossing 
angle 6 << 1 (without crabbing), we simply use the an- 
gle (5’ + 8) instead of Z’ when calculating the longitudinal 
kick. Neglecting quadratic terms (6~‘)’ and (by’)‘, we 
have 

6E 
-z i[( 5’ + 0) 6x’ I- y’by’] 
E 

(c) Crossing angle. In addition to ~E;E, B changes the 
horizontal distance between the “weak” particle position z 
and the position x, of the center of the strong bunch slice, 
at the moment of collision with this slice: 

Li = (x -. xc:) = xi,, 4 s(l) (xi,, + 0) - s,.a, (13) 

where s(‘) = (s;[’ - 5,:) 12, xi,,, rir,, and s;,, are coordinates 
of the particle in the “weak”bunch system, s,: is the s- 
coordinate of the slice in the %trong” bunch system, and u 

L 

K = 0.73 K 1 0.75 

.66 

.67 

u, 
h- 

x-9: t+ 9+ 1 

C 6.96 c ~ 0.54 
L :- 1.0 L 0.8 

1 

[{ (I 79 * r7 .- o.si ’ 
c ~ 7.(18 c 5.7 
LT1.U ,L 0.85 J 

Table 1: Examples of stable regions. C, is the initial 
luminosity; K = L (10’“) /.C,, (10”‘). L fIn,$ lo’,’ 
n/j = 150; 111 = 207rA, I ~ 3 .4. L 3.3 Cc1 - ’ ; J ’ ((bi,t)l( 
beams); crossing angle B 7 33 rnrcu~inns 

is the crabbing angle; LY ~ 0 in our casr. For tllca short disk- 
like bunch, CT;, z CT;> we have CT; 0 -y CT;, so the influence 
of the crossing angle on 3, is very sr~lall. 

(d) Feedback d’p 1 1 0 e corrections. \,Ye havt~ included such 
corrections in the program because \vithc)ut them soIn< 
dipole beam-beam instabilities could develop. 

The main preliminary result of the simulations is that 
the tune map of the luminosity, C. = L: (v,, v,,,)) in this 
design is at least as good as the maps uf us11a1 colliders 
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