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Abstract 

The orbit, tune, chromaticity and p values for the Phase I 
XLS ring were computed by numerical integration of the equations 
of motion using fields obtained from the coefficients of the 3- 
dimensional solution of Laplace’s Equation evaluated by fits to 
magnetic measurements. The results are in good agreement with 
available data. The method has been extended to higher order fits 
of TOSCA generated fields in planes normal to the reference axis 
using the coil configuration proposed for the Superconducting X- 
Ray Lithography Source. Agreement with results from numerical 
integration through fields given directly by TOSCA is excellent. 
The formulation of the normal multipole expansion presented by 
Brown and Servranckx has been extended to include skew mul- 
tipole terms. The method appears appropriate for analysis of mag- 
netic measurements of the SXLS. 

1. Introduction 

The Phase I X-Ray Lithography Source o<LS) is a conven- 
tional magnet prototype of the compact Superconducting X-Ray 
Lithography Source (SXLS) under construction at BNL. The two 
180degrce bending magnets of these storage rings incorporate 
dipole, vertically focusing quadrupole, and defocusing sextupole 
(SD) fields as well as unavoidable higher order multipole com- 
ponents. The expected lattice properties of the XLS were obtained 
by Murphy and Vignolat’l using a conventional combined function 
bending magnet model. Subsequently we performed more detailed 
calculations using numerical integration of the equations of motion 
by a 4* order Runge-Kutta technique (program ORBlT) through 
fields generated by the TOSCA programt21 with dipole and quadru- 
pole components similar to the CDR model. The resulting tunes, 
betatron functions and synchrotron radiation integralst31 were in 
remarkably good agreement with the earlier work. We have subse- 
quently used program ORBIT with TOSCA generated fields from 
more complex conductor configurations to evaluate the lattice pro- 
perties of the SXLS. t4t However, a major obstacle in the use of 
ORBIT has been the excessive computer time required by TOSCA. 
The CPU time constraint has also precluded the use of ORBIT in 
multiturn tracking studies. Finally, we required a method to obtain 
the field components directly from the magnetic measurements 
data.[‘] We therefore developed a procedure to obtain the expansion 
coefficients for the scalar potential following the lucid presentation 
of Brown and Servranckxt’t (BS). The XLS magnetic measure- 
ments of median plane B, transverse to the reference axis were 
fitted by least squares at 101 longitudinal positions along the axis 
for the m = 0 coefficients; higher order coefficients were generated 
by a recursion relation up to 2nd order. The procedure was 
confirmed by fitting to TOSCA generated “data” and comparing to 
lattice functions produced by ORBIT using TOSCA. The values 
for orbit, tune and chromaticity calculated for the XLS are in rea- 
sonable agreement with initial measurements.t71 The method has 
been extended to obtain all expansion coefficients by performing 
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two dimensional least squares fitting of vertical component (B,) 
simulated data in planes normal to the reference axis. Lattice pro- 
perties obtained by ORBIT using TOSCA generated fields and 
fields obtained from the fit coefficients are in excellent agreement. 
We have also extended the BS formulation to include the asym- 
metric (skew) solution of Laplace’s equation with excellent fits to 
simulated data. 

2. Formulation of Three Dimensional Solution for Field 

The solution of Laplace’s Equation in curvilinear coordinates 
(x normal to the central trajectory) which has odd parity $(x,&s) = 
4(x,-z,s) and thus yields a solution for B, which is symmetric 
about the median plane z = 0 is given by BS, 

m w 
22”’ 4’kzs) = z= C Ati+&) x” - 

m=erFo n! (2m+l)! 

where h=l/p(s) and p(s)=radius of curvature. The coordinate sys- 
tem is illustrated in the preceding papert4] on a central trajectory 
about the XLS reference axis. The B, component is given by BS 
from Eq.(l) and 3 = d4 as 

B.=$=gCA Zh 
antIP x” - m=O ~ n! (2m)! (2) 

To 2ti order, where A = dA/ds, BS gives, 

B, = Ar,z + A,,xz (34 

B, = A,,, + Atrx + At2x2/2! + A30z2/2! (3b) 

B, = (&,z + Arrxz)/(l + hx) (3c) 

The coefficients with m > 0 are written in terms of the m = 
0 coefficients by use of the recursion relation given by BS from 
substitution of Eq.(l) into Laplace’s Equation. In particular, . . 
A30 = - (&o + WI + Ad. 

The even parity solution to Laplace’s Equation $(x,z,s) = 
(Ps(x,-Gs) can be written as 

w m 

@E(X,Z.S) = c c A 
zhn+2 

zmt2P(S) x” ~ mu IFo n! (2m+2)! (4) 

and leads to expressions for the field components in which B, is 
antisymmetric about the z=O plane. 

an m 

B,E = I2 I2 Azm+z,n+1(4 5 $$, 
m=o n=o 

(5d 

(5b) B,E = ii I: k+&) 5 6 
dn=a 

B;= (5c) 

Again, a recursion relation can be derived by substitution of Eq.(4) 
in Laplace’s Equation. It is 

. . 
- Awp = Az,t2,, i- &&,+r - nhAbn+Zn-l (6) 
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+ hm+~n+2 + h(3n + 1) Ati+*+, + nh2(3n - 1) Ati+, 

+ nh3(n - 1)’ Alm+zpl + 3nh Ati++.- + 

3nh2(n - 1) A&4*2 + nh3(n - l)(n - 2) Awp-3 

For ORBIT we use a cylindrical coordinate system (t&z) 
shown in the preceding paper I41 Further, we assume that the cen- . 
tral trajectory is sufficiently close to the reference axis that we Can 
evaluate the components of Eq.(2) and (5) relative to that axis. B, 
is the same in both systems. The transverse components required 
by ORBIT are, for y > ys 

B, = B,cos(B - @) + B,sin(B - 0) (74 
Be = B,cos(B - +) - B&(9 - I$) for Y > Y, VW 

3. Ring Parameters from 3-D Expansion Coefficients 

For the XLS analysis we first tested the above procedure by 
generating “data” from TOSCA for the same grid used in the mag- 
netic measurements and for a particular conductor configuration 
designated FEB16. Vertical field comporients in the median plane, 
B,(x,O.s) were computed at 101 positions along the reference axis 
and transversely at 13 points in the interval -27 < x I 27 mm. The 
transverse data were fitted by a least squares program out to 4th 
order in x to obtain the coefficients Alo, All, A1z, A13. and Al4 at 
each azimuth. The transverse field components B, and B, were 
evaluated only to 2”d order as in Eq.(3). The coefficients were 
fitted longitudinal!y using a cubic spline routine to obtain the 
derivatives Alo, All, and Alo of b.(3). The tables of spline 
coefficients were incorporated into a subroutine, MIKE613. which 
replaced TOSCA in ORBIT and the resulting orbit tune, chromati- 
city and p values are compared in Table I to similar numbers pro- 
duced by ORBIT with TOSCA generated field components. The 
agreement of the central orbit position and other parameters related 
to small amplitude oscillations about the central orbit such as tune, 
p, and horizontal chromatic@ are excellent. The vertical chromati- 
city is off by about 10%. Higher order chromaticities are in poor 
agreement and suggest that we need higher order terms in B, and 
B, to accurately calculate the tunes for off momentum orbits far 
from the central trajectory. We also verify in Table I that increas- 
ing the number of data points transversely and longitudinally by a 
factor of two does not significantly affect the results. 

The same procedure outlined above was applied to the mag- 
netic measurements data. The resulting equilibrium orbit shown in 
Fig. 1 indicates that the magnet is too long on either end by about 
4 mm, i.e. the orbit position at 8 = &2 is about 4 mm inside the 
reference axis when the electron trajectory starts on the reference 
axis at the straight-section quadrupole QF. Alternatively an outward 
dispacement of the orbit initial coordinate at QF by 4 mm, i.e. an 
offset of the QF quadrupole axis, gives an orbit on the reference 
axis at 8 = 7c/2. This displacement has been made in the machine 
and the resultant closed orbit deviation is now within fl mm. The 
tune vs. momentum calculation is shown in Fig.2 and indicates that 
the central vertical tune about the offset equilibrium orbit is vvo = 
1.317 when the horizontal tune is fixed at the vH0 = 1.415 design 
value. This value for Vv is significantly lower than the design 
value of 0.415. Measurements of vv with the correction poleface 
quadrupole windings set to nearly zero give VV = 0.34, in good 
agreement with the calculation. Similarly, chromaticity measure- 
ments with the correction sextupole poleface windings set to nearly 
zero give eH = 1.79 and kv = 1.94, in reasonable agreement with 
the predicted value of corrected (SF on) chromaticity 5: = 6: = 
1.779. 

4. Three-Dimensional Representation of SXLS Field 

The results of the above analysis indicate that we require 
higher order terms to accurately represent the field far from the 
central orbit. Also we will require accurate m > 0 coefficients to 
reproduce the field components far from the median plane for mul- 
titum tracking. Inspection of the recursion relation given by BS for 
the normal (odd-parity) potential and E+(6) for the skew solution 
shows that the expressions for these coefficients become rapidly 
more complex with increasing order. Moreover, higher or&r intro- 
duces higher derivatives; 6th derivatives d”A/ds6 etc. appear for 6th 
order and impose formidable requirements on smoothness for the 
interpolating function f(s). To avoid these problems and make pos- 
sible fitting to high order, we have developed a 2-dimensional least 
squares procedure to obtain all of the expansion coefficients 
directly without recourse to recursion. The procedure requires that 
we fit B,(x,z.s) in planes normal to the reference axis at longitudi- 
nal positions Si. Then it is only necessary to interpolate for the 
coefficients and first derivatives required by B, in &. (2) and B,. 
We have tested this procedure by generating TOSCA “data” with a 
double precision version which yields B,(x,z) on a grid of 465 
points in the interval -30 I x < 30 mm and -14 I z I 14 mm at 2 
mm spacing for 151 planes between 8 =.4350 and ~~f.2 radians, 
using the most recent SXLS conductor configuration designated 
NOV29. RMS errors of the calculated B,‘s are estimated to be at 
most 3x10-” T. As expected, the multipole content of this conduc- 
tor dominated field is high, especially in the extensive fringe field 
region, and the least square goodness-of-fit criterion x2/N minii- 
ized at 14th order with x2/N = 0.6. We further find that x2/N is a 
factor of 3 smaller by fitting to a given order rather than evaluating 
the rectangular array of coefficients which results from a constant 
upper limit on the sums of Eq.(2); we therefore use an upper limit 
of NR-2m on the n-sum and NR/2 on the m-sum. This results in 
(NR+2)2/4 terms which, for 14th order gives NP = 64 coefficients. 
Comparison of lattice parameters from ORBIT in Table II for the 
TOSCA generated components and the components generated by 
the fit coefficients are in excellent agreement up to 31d order 
chromaticity terms. We have used polynomial (cubic) interpolation 
longitudinally in the present calculation and anticipate improved 
accuracy with a smoother function such as a spline or fitted polyno- 
mial. Also, the longitudinal spacing of points in the fringe field 
region is not optimal in the present calculation. 
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Figure 1: XLS Equilibrium Orbit With No Quadrupole Offset 
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Figure 2: XLS Tune vs. Momentum Offset 8 = Ap/po, 2nd Order Fit 
to Magnetic Measurement Data, Quad Offset = 4 mm (v = C vi@. 

(2a): v” = 1.4148 - 1.37296 - .8142a2 - 744S3, v6s=l.4149 + 
1.77298 + 7.0798S2 - 393S3, 

(2b): v” = .3168 + 4.83486 - 49.73S2 + 610S3, vds=.3168 + 
1.78436 - 53.8S2 + 72.04S3 

Table I: Comparison of FEB16 TOSCA results with Cubic 
Spline Fit of TOSCA field. 

vH 

Feb16 TOSCA FIT 615 

1.415 1.415 
vv .4111 0.4148 

BP [T-ml 2.3276 2.3276 

&v2 bd .07637 .07566 

POH [ml 2.4911 2.4911 
POV [ml 1 1.5427 1.5238 
so 1 .2911 .2913 

I 
V& 1 .9124 1 2.5875 1 

v,u, -43.343 -73.635 
vi; 1.7342 1.5203 

v,Y, 8.9081 -2.1797 

v3”v 154.6 -22.61 
R Points 13 

I I -- 

Angles 1 101 

Table Ih Parameters for SXLS COILNOV29, ORBIT results 
using TOSCA and 14” order fit coefficients generated from 
TOSCA data. (VH,V = C ViS’) 

.-._ - 
1 fiN ]m] 

I 
] 7.36071701 1 7.36598389 1 

VOH 1.41496 1.41498 

VlH -1.16857 -1.16833 

hH -2.10806 1.80049 
V3H -43.8374 -48.9103 

V4H 147.023 799.899 
VOV 0.400434 0.399916 

VIV 1.34504 1.34490 

v2v 4.25356 4.21889 

v3v 190.08 1 200.015 

VAV -6311.85 -6084.37 
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