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For a one-dimensional time-independent conduction state, 
a constant with respect the longitudinal coordinated, z, is 
associated. This approach contains the cryogenic stabiliza- 
tion criterion as a particular case. Using this constant, the 
temperature profile along the conductor is studied consid- 
ering the effect of thermal conductivity and heat transfer 
to Helium. 

1 Introduction 

The quench simulations of a SuperconducCng (SC.) mag- 
net requires some assumptions about the evolution of the 
normal zone and its t,emperature profile. The axial evolu- 
tion of the normal zone is considered through the longitu- 
dinal quench velocity. However, the transversal quench 
propagation may be considered through the transversal 
quench velocity[l] or with the t,urn-to-turn time delay 
quench propagation[2]. The temperature distribution has 
been assumed adiabatic-like[l, 31 or cosine-like[2] in two 
differents comput,er programs. Although both profiles are 
different, they bring about more or less the same qualita- 
tive quench results differing only in about 8% [J]. Un- 
fortunately, there are not experimental data for the tem- 
perature profile along the conductor in a quench event to 
have a realistic comparison. Little attention has received 
the temperature profile, mainly because it is not so critical 
parameter in the quench analysis. Nonetheless, a confident 
quench analysis requires that the temperature distribution 
along the normal zone be taken into account with good 
approximation. In this paper, an analytical study is made 
about the temperature profile. This is deduced from the 
one-dimensional and time-independent (TI) states approx- 
imation of the heat conduction equation. In the approach, 
a constant associated to the system is deduced, then, us- 
ing this constant, the temperature profile can be explicitly 
given for several cases. The cryogenic stability criterion is 
an imtnediate conseqllcnce of this approach. 

Once a quench appears in a S.C. cable, the normal zone 
moves longitudinally with a speed given by the magnitude 
of the quench velocity. The normal zone becomes resis- 
tive, and its temperature, 0, at the point t and at the 
time t changes in accordance with the heat equation, 

(SC); = g (k(D);) + p(qP - y , (1) 

where (SC) represents the product of the density, 6, times 
the specific heat, c, averaged over all the components of the 
conductor; k is the thermal conductivity; pJ2 is the Joule 
heating; P is the perimeter of the conductor in contact 
with He which has a cross section area A: H is the heat 
transfer function which depends on CT = 0 - O,, being 
8, the bath temperature (considered constant). A TI state 
of this system is the time independent solution (S/at = 0) 
of the equation (1) which is given by 

-& k(B)$ + p(QP - 7 ( 1 
Pff(a) = 0 (2) 

Defining the function u as 

the equation (2) can be written as the following dynamical 
system 

dv 
z= (4a) 

and 
dQ 
- = v/k(O) 
di (4b) 

being k(Q) a positive function. 
A constant, Ii’, associated to this system along the lon- 

gitudinal direction, z, satisfies t,he following equation 

dK 
-=o 
dz 
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where the operator d/dz is given by 

d 
(lz= 
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The partial differential equation resulting from (5) and 
(6)) 

1 aK 
- p(0)J2 -g- = 0 1 

V 
(7) 

can be solved by t,hc characteristics tnethod. The equations 
for the characteristics are given by 

k( B)dO dv dK 
-= =----. (8) v PH(a) 0 

A - PWJ2 1 
From the first two terms, the next characteristic curve 

is obtained 8 
c = 212/2 + J[ P(OJ2 - “‘(;- “) k(c$)d< , 1 (9) 

so a constant associated to the dynamic system (4) is 

K=T+V, (10) 

where the functions T and V are defined as 

T = c2/2 (lla) 

and 6 V( 0) = J[ PWJ2 - ‘“‘\- y k(.()fg , (lib) 
Borrowing the language of Classic Mechanics, the first 
term of the right hand side of (10) represent,s the “Kinetic 
” and the second term the “Potential” contribution to the 
const,ant of motion of the system. 

The constant (10) can be specified at any point, zt, ob- 
taining the following relation 

$2 - 13) = ./+; [ pH(;- “) - p(<)J2] k(<)dE . (12) 

If there is a region in the conductor such that at given 
point, z, = 0, the temperature is the bath temperature, 
O(Z* = 0) = 8,) and at other point, z = 1 corresponding to 
the normal zone, the tetnperature is Q(z = I) = 81, and at 
both points the magnitude of heat flux has the same value, 
IL(z- = O)( = II~(z = /)I, then from the relation (12), Mad- 
dock et al’s cryogenic stabilization theorem [5] appears as 
a particular case in t,his approach, 01 

J[ H(E - Qo) - Af K)J2 k(<)d< = 0 (13) 
0‘7 

p 1 
3 Cosine-like Profile. 

Considering the normal zone region where the tempera- 
tures are higher than 25 K (the resistivity is not cokant), 
;tssurIling that the thermal conductivity is constant, k,, 
and that linear growing of the resist,ivity with the temper- 
at,urc, p = ~10, the constant associattd t,o this system is 
given by 

Ii = v’/2 $ k,pl.J’0”/2 (14) 

Rearranging terrns in (14), it follows 

ko 
d8 

= -* 
2K - k,pl J2e2 

which can be integrated to obtain the following tempera- 
ture profile 

B(z)= {scos (@) , (16) 

where the new constant of integration has been set equal 
to zero. The constant associated to the system may be 
valuated by assuming that at the point z = 0, the flux of 
heat is zero, v = 0, and the temperature at this point is 
the hot-spot temperature, e(r = 0) = 8,. Thus, K is given 
by 

K = ;pl&J2f?; , 

and the temperature profile is given as1 

(17) 

O(Z) = 8, cos 
PlJ2 

V-7 

F % 
0 

(18) 

4 Polynomial Approximation. 

Assume that in a given normal zone region of the conduc- 
tor, the resistivity, the thermal conductivity, and the heat 
transfer function can have a polynomial approximation, 

p = ~~-8’ , k = k,V ) and H = h(c) + H, (19) 

where the powers and coefficients depend upon the in- 
tervale of temperatures in consideration. Therefore, the 
constant (10) h as eight possible expressions which can be 
summarized as follows 

PA J2 gl+ltL 

1+7+c 
if l+y+~#O 

+ 

PA, J2Lw(Q) if l+y+c=O 

if 2+7#0 
+ 

hLog(0) if 2+7 = 0 

Ho - eoh 61+-, 
I+7 if 1+7#0 

(20) 
(H, - B,h)Log(B) if l-t- 7 = 0 

‘In the SSC-RR computer program (see reference 2), the follow- 
ing approximation is used: For the normal zone where the temper- 
atures are lower than about 25 K, the resistivity is constant, PRRR. 
For temperature higher than these, the profile of the resistivity in 
this normal zone of length L is taken as p = p,cos(wr), where 
pz is the resistivity in the hot-spot temperature, and w is given by 

d = ~TC~~(PRRR/PZ)/~J. 
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In this way, knowing the state (8, V) in one point of the 
normal zone, the parameters of (21) and the constant (23) 
can be known, and solving the integral 

(21) 

the temperature profile can be known in the length of the 
normal zone where the parametrization is valid. In princi- 
ple, this procedure may be made section by section of the 
normal zone, matching the solutions at the boundaries, to 
obtain the entire temperature profile of the whole normal 
zone. But, unfortunately it is not always easy to obtain 
the explicit solution from (21). Two particular cases will 
be presented below. 

4.1 Thermal Conductivity Effect. 

Consider the normal zone region where the resistivity is 
constant(c = 0), the heat transfer is neglected (H, = 
0,h = 0), and the thermal conductivity power satisfies 
1+ 7 # 0, the constant associated to the system is 

12 - P&J2 gl+Y 
Ii=2 + 1+-f . 

(22) 

The int,egration of (21) brings about the following solution 

f?(z) = ( 2plo;T;2) + [ale - (poJ2k,)2(z + a)“] h , 

(23) 
where a is a constant of integration. It is clear that the 
profile when k increases with the temperature (I+7 > 0) is 
different when k is decreasing (1+7 < 0). Even though, for 
copper, the transition from 1 + 7 > 0 to 1+ 7 < 0 occures 
just about when the copper resistivity starts to increase 
(6 > 0), the above approximation point out the fact that 
the thermal conductivity has a qualitative change in the 
normal zone temperature profile. The case c > 0 can be 
studied following the same procedure. 

4.2 Heat Transfer Effect. 

Assume that the thermal conductivity and the resistivity 
are constants(7 = 0 and t = 0), in the normal zone region 
where the heat transfer is taken place. From (lo), the 
constant associated to this system is 

I< = ; v2 + CpokoJ2 + (ho, - H,)]6’ - $ d2 , (24) 

and the temperature profile, after integrating (21) and re- 
arranging t.erms, is 

e(Z) = p-& i pok,J” + hO, - Ho] + 

sinh 

where 4 is the constant of integration determined by the 
condition of the state of the system, (0, u), at some point. 
This profile contrasts with that one obtained when no heat 
transfer is considered 

- ~(~oc,J2)~~ + aI2 , (26) 

being a a constant of integration. So, the heat transfer 
also has a qualitative effect in the temperature profile. 

5 Conclusion. 

Using TI states of the one-dimensional heat conduction 
equation, some analytical approximation have been used to 
study the temperature profile of the normal zone of the S.C. 
cable. The analysis points out that the heat transfer as well 
as the conductivity may have a non trivial contribution on 
the temperature distribution during a quench. A computer 
numerical calculation may give more information if care 
is taken in considering correctly the non linear element 
involve in the equation. But even doing this, experimental 
data are required to compare them with a numerical or 
any analytical approximations. 
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