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Abstract 
From the accelerator designer standpoint, one of the quan- 
tities of interest in a magnet is the axially integrated trans- 
verse field. It is easily shown that the latter satisfies the 
equations of 2D magnetostatics. This is the basic the+ 
retical result needed to design accelerator magnet ends. 
Unfortunately, axially integrated fields must be obtained 
from accurate 3D field maps and magnets ends have his- 
torically been designed using a cut and try approach. To 
a certain extent, this remains true even today; however, 
the advent of reliable 3D magnet design codes now per- 
mits to substantially reduce the costs associated with the 
construction of various prototypes. In this paper, the the- 
ory of magnet end design is reviewed. The design of the 
end of the dipole magnets of the proposed Fermilab Main 
Injector is analyzed in a detailed manner using TOSCA, a 
well-established 3D finite element code. Provided the lim- 
itations of the code are well understood by the user, the 
integrated field profile is satisfactorily predicted. 

Theory 
The relevant data for particle tracking is the net amount 
Ap of momentum transferred from the longitudinal to the 
tranverse degrees of freedom of a particle during its pas- 
sage through a magnet. Assuming the wavelength of the 
betatron oscillations is sufficiently large compared with the 
length of the magnet, one can consider the trajectories of 
the charged particles to be straight lines. For such trajec- 
tories, 
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where the overbar denotes z-integrated quantities. Here s 
is the longitudinal position along the closed orbit; x and 
y are the transverse coordinates, x being in the deflecting 
plane. To a very good approximation, one has s N Z. As 
usual, q is the charge and v is the velocity of the particle. 
In the source-free aperture of a magnet, the magnetostatic 
field can be represented by a harmonic scalar potential 
a(~, y, z). Integrating Laplace’s equation in Cartesian co- 
ordinates with respect to t leads to the relation 

v&x, y) = -!J! 
a*lz2- -y =O t3) 

where Vr is the transverse Laplacian, This is a remarkable 
result: the z-integrated potential @(t, y) is a harmonic 
function if zi and .sz are chosen in such a way that 

f&(x, Y, z2) = Bz(z, Y, 21) (4 
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This constraint is certainly satisfied zr and zz are at in- 
finity. If the magnet geometry is such that B, has odd 
symmetry with respect to Z, one could also choose one of 
the limits to coincide with the origin. In practice, the con- 
dition (4) can only be satisfied approximately; the point 
~1 is usually a point well inside the body of the magnet 
while the point ~2 is away from the edge of the magnet in 
a region where B (and a fortiori B,) is expected to be very 
small. 

The fact that the integrated potential is harmonic im- 
plies that the integrated transverse magnetic field has all 
the properties of a two-dimensional field. In particular, for 
a magnet that has mirror symmetry with respect to the 
horizontal and vertical midplane, the integrated field over 
the entire aperture is completely determined by the values 
of the vertical field on the z-axis. An end correction 
scheme can therefore be designed on the sole basis 
of its effect on the integrated field in the horizontal 
midplane. 

3D Magnetostatics Codes 

The numerical solution of the equations of magnetostatics 
in 3D can be approached in a different number of ways. 
GFUN, one of the first widely available 3D codes, attacked 
the problem by constructing an integral equation for the 
magnetization. Essentially, the field produced by the coils 
is first computed by numerical integration using Ampere’s 
formula. The induced magnetization is then calculated and 
iterations are performed until the relation between M and 
H becomes self-consistent. 

This method has two advantages: (1) only the regions 
which contain magnetic materials need to be discretized 
(2) no spurious boundary conditions need to be imposed 
to simulateopen boundaries. Unfortunately, the GFUN al- 
gorithm has a serious drawback: at each iteration, the field 
due to the induced magnetization is computed by summing 
the field of a distribution of magnetic dipole in free space. 
Since the field must also be computed separately at every 
single point of the grid, the computational cost entailed is 
prohibitive. 

In current state-of-the-art 3D magnet design codes, the 
magnetic field is split into a solenoidal component B, and 
an irrotational component Bi. The solenoidal component 
is still obtained by applying Ampere’s formula to the con- 
ductors.This choice corresponds to the imposition of par- 
ticular boundary conditions on B,. These conditions, com- 
bined with the boundary conditions prescribed for B, de- 
termine the boundary conditions on Bi. Since B, is fixed, 
Bi can be represented by a reduced scalar potential 4. Q 
is then computed using the finite element method. 

In practice, B, and Bi often tend to be of approximately 
equal magnitudes and opposite directions in highly perme- 
able materials; this may lead to serious errors on B. The 
difficulty can be side-stepped by using a total scalar po- 
tential in regions where cancellation errors are expected 
to occur. This amounts to choose B, = 0 in these re- 
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gions where, of course, no current can be allowed to circu- 
late. The code TOSCA [l] which we are currently using 
at Fermilab was the first one to implement the two-scalar 
potential formulation [l]. TOSCA started as a research 
project at the Rutherford Laboratory, U.K.; it is now a 
well-established and supported commercial product. 

It is worth noting in passing that it is possible to repre- 
sent the magnetic field by a vector potential A to obtain 
a numerical solution. This formulation offers the advan- 
tage of eliminating the need to compute the coil fields by 
integration. Unfortunately, the imposition of a gauge on 
A poses some technical problems. Recent advances will 
probably change this state of affair and commercial codes 
based on a vector potential formulation should become 
more commonplace in a near future. 

End Pack Design 

Because of their length, dipole magnets are often consid- 
ered to be quasi two-dimensionalobjects. Indeed, the body 
fields can be predicted to a part in lo4 using a conventional 
two-dimensional code. To the extent that end effects can 
be considered as a small perturbation, the first generation 
of accelerator magnets was build without paying special 
attention to them. The body of the magnet terminated 
abruptly and that was it. The principal problem with such 
“sharp ends” is that the flux concentrates in the vicinity of 
the iron edge. As a result, the edge region saturates pre- 
maturely and the integrated dipole field tends to depend 
on the excitation current. The well-known cure for this 
problem is a beveled end, 

Due to fringing, the vertical field in the midplane is 
stronger on the axis and gets weaker as one moves horizon- 
tally, away from the axis. For this reason, the integrated 
field of an uncorrected end exhibits rather strong negative 
(with respect to the dipole component) sextupole and de- 
capole components. The correction scheme must enhance 
the integrated field for paths which are away from the axis 
in the horizontal plane. This is achieved in the current 
design by the addition of four shims, as shown in figure 
1. Note that the exact shape of the shims is not critical; 
the basic rule is to avoid acute angles. In that respect, 
smooth curved surfaces would be ideal; however, the end 
packs have to be easy to fabricate. 

The main injector dipole magnets come in two varieties. 
The so-called full length dipoles are designed to have an 
effective length of 6.096 meters (240 in). The second type 
of dipole magnet is identical to the first one, except that 
it has 2/3 of the effective length. The magnets are curved 
with a sagitta of 1.598 cm (0.629 in) and have parallel faces. 
The body of the magnet is 5.8013 meters long (228.4 in 
and is terminated by two removable 14.9225 cm (5.875 in 1 
long end packs. 

Because of saturation, the field quality (i.e. its devia- 
tion from uniformity) of a dipole magnet depends on the 
excitation current. Due to the length of the magnet, the 
variations in the quality of the axially integrated field is 
mostly determined by the 2D body field. The contribu- 
tion of the end packs, which together account for roughly 
5% of the effective length of a full-length dipole, remains 
relatively constant. Clearly, it is not possible for the end 
to compensate for the imperfections in the body field at 
all currents. The design objective was therefore to design 
“neutral” end packs. In other words, the contribution of 
the ends to the integrated field quality had to be as small 
as possible. 

Results 

Using the code TOSCA, three types of ends were modeled: 
a sharp end, a beveled end and a beveled end with shims. 
Due to a practical limitation of about 50,000 nodes, the 
total length of the simulated magnets was set to 20.32 cm. 
This corresponds, to the actual physical length of both end 
packs. The field was represented by a total scalar potential 
in the gap region and by a reduced potential in the region 
in front of the bevel. Spurious Neumann boundary condi- 
tions were imposed on the reduced potential at t = 50 cm 
and at z = y = 30 cm to simulate open boundaries. All 
computations were performed with TOSCA Version 6.0 on 
a Solbourne series 5 model 800 workstation with 64 Mbytes 
of physical memory. With this setup, a typical run took 
about 3.5 hours. 

The effect of spurious boundary conditions can be under- 
stood by recalling Green’s theorem. According the latter, 
the field due the sources outside of the region of interest 
is equivalent to the field surface distributions of poles and 
dipoles whose magnitudes are respectively proportional to 
the tangential and normal components of the field. One 
therefore expects a solution with open boundaries and a 
solution where spurious boundary conditions have been 
imposed to differ significantly only in the vicinity of the 
boundary. In case additional accuracy is needed near the 
boundary TOSCA can reconstruct the field by integrat- 
ing the contribution of the coils and the induced magne- 
tization. The effect of the boundaries is then practically 
eliminated, The computational cost of this procedure is 
very high; still, this represents a major improvement on 
GFUN since no iterations have to be performed to reach 
self-consistency. 

The field profiles obtained for the three different types 
of end packs are illustrated in figure 2. The corresponding 
multipole coefficients are presented in Table 1. Note that 
the simple beveled end field quality is slightly worse that 
that of the sharp end. It is important to keep in mind that 
the purpose of the bevel is to reduce the dependence of the 
effective length on the excitation current. Figure 2 clearly 
illustrates the effect of the correction shims: the symmet- 
ric bumps on each side of the axis are the signature of the 
shims. The sextupole coefficient has become slightly posi- 
tive and the field error for z < 2.54 cm has been reduced 
by about an order of magnitude. 

Figure 3 is a plot of B, as a function of the longitudi- 
nal position t for different vertical offsets at 9417 A. The 
origin of z corresponds to the edge of the bevel. This fig- 
ure reveals two interesting facts. (1) Although the field 
increases more rapidly as one approaches the edge of the 
iron, this effect is partially compensated by a faster decay. 
(2) The field in the center of the magnet (at 9417 A) is 
approximately 7 % weaker than what is predicted by 2D 
calculations 21. 

I, 
This is apparent discrepancy is caused 

by the fact t at the models used for the 3D calculations 
were not sufficiently long. While this may affect slightly 
the accuracy of the effective length prediction (especially 
in the case of the sharp end), the effect on the normalized 
sextupole and decapole is small. 

As mentioned in the previous paragraph, the Main In- 
jector dipoles magnets have parallel ends. Physically, a 
rectangular magnet differs from a sector magnet by two 
small wedge-shaped regions at both ends. These wedges 
act as thin quadrupoles and compensate exactly for the 
natural weak horizontal focusing of the sector magnet. As 
a result, the focusing is shifted to the vertical plane. If so 
desired, it is possible to correct the rectangular magnet to 
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make it behave like a sector magnet. This is achieved by 
breaking the left-right symmetry of the correction shims. 
One can make all the shims identical and move the vertical 
symmetry axis of the shims away from the axis of the mag- 
net, use smaller shims on one side or use a combination of 
both methods. 

- I=9417 A (150 GeV) sharp beveled beveled/shuns 
Iron Length (cm) 29.845 29.845 29.845 
Effectrve length (cm) 27.931 28.860 29.252 
sextupole (Q 2.54 cm -38.6 -53.4 +15.2 
decapole (Q2.54 cm) -10.7 -10.5 -13.3 

Table 1: The sextupole and the decapole coefficients are 
normalized with respect to the dipole and multiplied by 
104. For mechanical reasons, the sharp end magnet has 
slightly longer coils. 

Conclusion 
In conclusion, it is now possible to model the magnetic 
properties of magnet ends numerically. While this remains 
a time-consuming exercise, the rapid progress of the tech- 
nology makes practical a system where the parameters of 
individual end packs are be adjusted during production 
to minimize the effect of assembly errors. In fact, this is 
how the PEP interaction region quadrupoles at LBL were 
built in the late 70’s. At the time, however, the procedure 
could be justified only under rather special circumstances 
because of its high cost. 
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Figure 1: A beveled end with correction shims.The coils 
are not shown. 
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Figure 2: Integrated field profile across the aperture. 
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Figure 3: Vertical field vs longitudinal position at different 
vertical offsets for a beveled end with shims. 
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