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Coil shapes to produce pure multipole fields in circu- Bay? as

lar regions have been studied and numerically evaluated.
Coil shapes have been assumed as functions of unknown
coefficients (and prescribed constraining parameters) and
cosine functions. The coefficients have been numerically
determined to produce the required multipole, simultane-
ously reducing the other multipoles to zero, or to negligible
values.

[. INTRODUCTION

Coil shapes to produce approximately pure multipole
fields in circular regions were studied earlier, with cosine
expressions for the shapes of coils {1]. The required multi-
pole was found to be of the order of A (with A < 1.0); the
multipole impurities were found to be of the order of higher
powers of A. It is possible to reduce the impurities further
by assuming coil shapes as a linear combination of the
profiles {used in [1]) along with weight coeflicients; these
welght coefficients could be determined to reduce the mul-
tipele impurities to zero in a numerical sense. Such a pro-
cedure has been studied here, and the numerical method
used to obtain these coeflicients 1s described.

II. MULTIPOLE EXPANSION

Let there be a current source I = ja(da){d¢), located at
the source co-ordinates a, ¢ with the current deusity being
j. Let the coil be bounded by the constant radius ap of
the circular field region on the inside and a radius az(¢) on
the inside. The multipole expansion for the 2-D potential
Ay at the field co-ordinates (r 8) for r < a is {1,2):
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The 2-dimensional magnetic field 1s given by
B=VXA (2)

The components of I3 in the cylindrical co-ardinate system

are
1A,
B, o= 222
r 08
A, .
Be = o= (3)

The cartesian components of the I3 field can be obtained
from the following equation:

&
I

B, cosl — Bysinf
B.sinf 4 Bgcos . (4)

=
|

y =

1. COIL SHAPLES

It was shown [1] that the following coil shapes and eur-
rent distributions lead, approximately, to the required mul-

tipole:
Dipole:
as = ai{l+ Alcose|)
Cos ¢ .
J = ]')T(ES%—‘. (5)
Quadrupole:
ay = ap el estzel
s 2g .
= eTesge (6)
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Sextupole and higher order poles:

@y = a[l.— Alcosme|]72
. . cosmg (7)
IT b | cosmg| :

In Equation (7), m = 3 leads to a sextupole, m = 4
leads to an octupole, etc.

The parameter A in Equations (5) to (7) must be < 1.0
to keep the design multipole predominant (of the order of
A), and the multipole impurities small (of the order of
higher powers of A).

IV. NUMERICAL DETERMINATION
OF COIL SHAPES

We will label cach term in the integral (1) as I, I,
Iy, etc.; further, each one of these terms can be decom-
posed into a term containing cos # and a term containing
sin§; we will label these terms (or, their integrals over ¢)
LC, LS, I1C, [,S, ete. If [;C were non-zero and the
rest were zero, pure dipole field would result. Similarly, if
we keep IpC non-zero and the rest zero, pure quadrupole
field results. Higher order multipoles can be achieved in
a similar fashion by suitably specializing on the terms In
integral (1). We can try to achieve the required multipole
design, by using a linear combination of the profiles given
in Equations (5) to(7} as follows:
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The task i1s to determine the coefficients A;, Aq, etc.,
to keep one of the integrals non-zero and simultaneously
reducing the others to zero. We will address the design
of a quadrupole as an example. The current distribution
1s given by Equation (6). We know from the approximate
solution of coll profile for a quadrupole in Equation (6),
There-
fore, we need to force the coil profile at three points in a
quadrant and calculate the rest of the coefficients. Let us

that 1t will consist of four crescent-type shapes.

use Ay, Ay, Az to force the profile to required values at
¢ = 0,%,and 5. We will input A4, As, As, Ajo, and Ajs,
and calculate A5, A7, Ag, and Ayg to reduce four undesired
integrals to zero. If we substitute Equations (8) and (6)
into Equation (1) and carry out the integration, we find
that all the terms except [,C, [4C, [¢C, IsC, ..
zero. In order to preserve the quadrupole field, we need
I, C to be non-zero and the rest to be zero. Hence, we will

., etc., are

evaluate Ag, A7, Ag, A11 so as to reduce [,C, [¢C, IkC),
and [,C to zero.

The first two equations are obtained from the following
conditions:

i _ 8 at ¢ =0 and g (where 1.0 < 8 < 2.0).
ay

The third equation is obtained from the following condi-
tion:
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We need four more equations; they are:

/“ LCdé = 0
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2
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2
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These seven equations are nonlinear in the unknown co-
efficients Ay, Aq, As, As, A7, Ay, Ay1, and A3. They can
be linearized about an assumed solution, and the result-
ing hinear equations can be iteratively solved with itial
guesses for the unknown coeflicients. Further details of
linearization and numerical solution can be found in [3].

V. RESULTS AND DISCUSSION

The equations detalled in the previous section were
solved for § = 1.2,1.3and 1.4, &« = 1.0. The resulting coef-
ficients for the coll profile are shown in Table 1. Field com-
putations were performed using the code PE2D [4] with
a; = 2.65 cm and with a current density of 3.5E8 amps/m?,
for case 2 (with 8 = 1.3). The coil shape is shown in Fig-
ure 1, and the potential distribution is shown in Figure 2.
The field at a radius of 1.0cm was used to conduct a har-
monic analysis using the following equation:

o0

By + 1B, = Z(f)n + 7'(,”)(1.’ + ,;y)n_

nwo

If the
quadrupole were pure, b(1) will be nonzero and the rest
will be zero. It is seen from Table 2 that 6(1) = 0.5218,
and 6(5) = 0.8048E—5. The rest of the coefficients are
still less. The impurities are found to be less than 0.02%.
Additional solutions for quadrupole, dipole, and sextupole,
along with details of the solutions can be found in 3].

The resulting coefficients are shown in Table 2.
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1.5

Table 1; Coefficients for Quadrupole Coil Profile.
CASE 1 CASE 2 CASE 3 1.0 -
f=12 3=13 g=14
Ay 0.174461 —0.180633 —0.518068
Ay 0.225794E—-3 0.372139E-3 0.62793E-3 0.5
Az 0.981432 1.63405 2.11447
As |02 0.2 0.2
As | —0.905020E—3 | —0.136362E—2 | —0.178955E—~2 o | -
Asg 0.2 0.2 0.2 :
Ax 0.13077 0.303228 0.531166
Asg 0.2 0.2 0.2 -0.5 -
Ag 0.599738E—-5 —0.404481E—3 | —0.104305E~2
A | 0.2 0.2 0.2
A | —0.30121 —0.690685 —1.18746 1.0 _
A2 0.2 0.2 0.2
-1.5

Table 2: Harmonic Coefficients for Quadrupole Case 2. 7
Figure 1. Quadrupole Coil Profile (f = 1.3).

n | b(n) a(n)
0 | —0.1807E—7 | —0.5889E—14 0.0
11 -0.5218 ~0.3400E-6 . .
35.0 Component : POT
21 —0.9913E—6 | —0.2848E—12 _ Mininum: 0.0, Maximum: 0.02, Iaterval: 0.002
3| —0.2864E—6 | —0.3733E—-12 0
4 | ~0.3178E—6 | 0.5178E—12 4.0
5| —0.8048E—5 | —0.1573E-10 0.0
6 | —0.4006E—6 | —0.9138E—12 35.00
7 | 0.4440E—6 0.1157E—11 £ 0.0
8 | —0.487E—6 | 0.1428E-11 = 5.0
9 | 0.6660E~6 | —0.2170E—11 0.0 )
10 | —0.5691E—6 | 0.2040E—-11 5.0
10.0— / \
— 1
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