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Abstract represent edges e (ij], (Lk), (i,l) etc. and the facetsf (ij,k), 
etc. The basis functions are defined as 

For computing accelerator magnets, integral codes have 
several advantages over finite element codes; far-field 
boundaries are treated automatically, and computed fields in the 
bore region satisfy Maxwell’s equations exactly. A new 
integral code employing edge elements rather than nodal 
elements has overcome the difficulties associated with earlier 
integral codes. By the use of field integrals (potential 
differences) as solution variables, the number of unknowns is 
reduced to one less than the number of nodes. Two examples, 
a hollow iron sphere and the dipole magnet of Advanced 
Photon Source injector synchrotron, show the capability of the 
code. The CPU time requirements are comparable to those of 
three-dimensional (3-D) finite-element codes. Experiments 
show that in practice it can realize much of the potential CPU 
time saving that parallel processing makes possible. 

W, = &VAj - AjVAi , e = (ii), (i,k) 

where the &‘s are the barycentric funclions. 

For first order (4-node) elements, the vector field F varies 
linearly inside the tetrahedron. But if F is the gradient of a 
scalar potential, then the line integral of F over a closed loop 
is zero, and only three of the six edges of the tetrahedron are 
independent. In that case the vector field F is constant within 
each tetrahedron. 

I. INTRODUCTION 

For computing accelerator magnets, integral codes have 
several advantages over finite element codes; far-field 
boundaries are treated automatically, and computed fields in the 
bore region satisfy Maxwell’s equations exactly, which is 
important for optimizing pole shape. Heretofore integral codes 
have not been able to treat complex iron shapes, nor could 
they give accurate fields near the iron surface. A new integral 
code employing edge elements rather than nodal elements has 
overcome these difficulties better than the earlier codes. The 
code is described below, and 3-D computations of a hollow 
sphere and of a dipole magnet for the Advanced Photon Source 
are presented to compare the new code with earlier codes. 

The magnetic field H is decomposed into the portion Hs 
produced by the coils and the portion Hm due to the 
magnetization of the iron: 

H=H,+H,. (3) 

The line integral can bc decomposed similarly: 

jH .dl = jH,.dl + jHm.dl . (4) 

We abbreviate (4) as h = h, + hs, and can express h, in terms 
of the scalar potential: 

h = (hi - #j + hs. (-3 

In terms of the magnetization M, the potential is: 
Bossavit [ 1,2] has popularized the use of edge elements and 

other Whitney elements in electromagnetic field computation. 
Subsequently other authors have described integral [3] and 
finite-element [4] codes employing edge elements. 

A vector field F can be approximated inside an element by 

F = C fiwi. (1) 

For edge eliments, the unknown coefficients fare the line 
integrals of F along each edge and the Wi’s are the edge basis 
functions. The simplest 3-D element is a tetrahedron with 
four nodes and six edges. We define the nodes ij,k,l and 

where r is the source point and T’ the field point. In an 
integral method, only the iron needs to be discrctizcd. In this 
code we use a tetrahedral mesh and treat the magnetization as 
being constant within each tetrahedron. The magnetization and 
magnetic field are related by the magnetic susceptibility x, M 
=xH, and so are the integrals of field and magnetization: 

m=Xh (7 

From (6) the potential from a single element can be written: 
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(2) 

II. FORMULATION 

t$=-$ T&,, s Ilr-r’ll (6) 
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‘#‘=-A t&i wi), 
i 

&da, 

where the Wj’s are the basis functions of the edge elements, 
defined in (2). 

Because the h,, are expressible in terms of potential 
differences, only N-l of them are independent, where N is the 
number of nodes. A tree is formed linking all of the nodes, 
and then all other h, can be expressed as sums and differences 
of the h, of the tree. Equations (5), (7) and (8) can be 
combined to form the matrix equation to be solved. 

(Cx - I )h = hs (9) 

III. IMPLEMENTATION 

The solution of a problem with the code progresses step by 
step. 

A. 

B. 

C. 

D. 

E. 

F. 

G. 

The magnetic material is discrctized into a tetrahedral 
mesh. For this we have used the pre- and 
postprocessor OPERA [51. 

A tree structure of edges is found, connecting the 
nodes of the mesh. 

Line integrals, hs, arc evaluated along each edge of 
the tree for the field from coils, using the Biot-Savart 
law, or equivalently, the potential differences produced 
by the coils. 

The matrix C is found using eq. (8). Line integrals h 
along edges of the cotree are expressed in terms of the 
integrals along edges of the tree. 

The system of equations is solved, and 
susceptibilities updated. 

The process is iterated until the convergence tolerance 
is reached. 

Fields (either B or H) at points inside or outside the 
steel are evaluated by a generalization of (9). Other 
electromagnetic quantities can be found also. 

IV.HOLLOWSPHEREINAUNIFORMFIELD 

A hollow sphere of nonlinear steel located in a uniform 
magnetic field provides a good test of a magnetic field code, 
because the form of the solution fields is well known and 
because the magnetic shielding of the interior results from a 
near cancellation of the applied field by the field from the 
magnetization [6]. We modeled one octant of a sphere of inner 
radius 0.1 m, outer radius 0.2 m, and solved it with the new 
code and with the axisymmetric 2-D finite element code PE2D 

[5]. The mesh and tree are shown in Fig. l., and the two 
solutions are compared in Fig. 2. Details of the computation 
are shown in Table 1. 

Fig. 1. Mesh for a hollow sphere, with tree accented. 
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Fig. 2. Computed field for the nonlinear hollow sphere. 
Variation of field with radius in direction of applied field 
(lower curve) and perpendicular to applied field (upper curve). 
Squares: Integral code. Solid curve: Axisymmetric 
computation with PE2D, 

~.DIPOLEMAGNET FOR THE APS INJECTOR 
SYNCHROTRON 

The code was also applied to the dipole magnet of the 
injector synchrotron for the Advanced Photon Source (APS), 
now under construction at Argonne National Laboratory 
(ANL), [7]. Earlier computations, performed by the codes 
GFUN and TOSCA [5], arc described elsewhere 181. The mesh 
and tree are shown in Fig. 3., and the solutions are compared 
in Fig. 4. Details of the computation are shown in Table 1. 
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Fig. 3. Tree (left) and mesh (right) for the dipole magnet 
of the APS injector synchrotron. 1600 elements, 522 nodes. 
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Fig. 4. Computed field for the APS injector synchrotron 
dipole Solid line: TOSCA [6], Squares: Integral code. 

Table 1 
Parameters for the computations 

Parameter Hollow Sphere APS Inj. Dipole 

LinearllNonlinear 
Elements 
Nodes 
Equations 
iterations 
CPU-time on SUN 
SPARCstation SLC 
Field from coils 
Matrix setup 
Tree generation 
Solution of equations 
Total: 

nonlinear nonlinear 
648 1600 
165 522 
164 521 
30 42 

CO.01 set 
10 min 
0.07 sec. 
10 min 
20 min 

20 min 
92 min 
1.06 sec. 
3 hours 
5 hours 

VI. PARALLEL COMPUTING 

The code described here runs quickly on serial computers; 
as noted above in Table 1, a computation with 165 nodes and 
648 elements required only 20 CPU minutes on the smallest 
SUN SPARCstation SLC. 

Nonetheless, an important feature of the code is that it can 
take full advantage of parallel computation. In evaluating the 
geometrical factors in the matrix elements every element is 
independent of every other; hence parallel computation is very 
effcctivc. In going from one processor to two, the 
computation time decreased by a factor of about 1.85. Adding 
more processors yielded comparable improvcmcnt, up to 36 
processors were tested. 

In solving systems of equations with dense matrices, 
Gaussian elimination lends itself to parallel computation. 
Adding a second processor of a shared memory computer was 
found to decrease the computation time by a factor 1.65 or 
more, but adding several processors yielded diminishing 
improvements. For a distributed memory machine, an LU or 
QR decomposition would be the solution method of choice, 
but we have not yet used the code on such a machine. 
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