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Abstract 

One of the magnet measurements performed at LAMPF 
is the determination of the cylindrical harmonics of a 
quadrupole magnet using a rotating coil. The data are 
analyzed with the code HARMAL [I] to derive the 
amplitudes of the harmonics. Initially, the origin of the 
polar coordinate system is the axis of the rotating coil. A 
new coordinate system is found by a simple translation of 
the old system such that the dipole moment in the new 
system is zero. The origin of this translated system is 
referred to as the magnetic center. Given this translation, 
the code calculates the coefficients of the cylindrical 
harmonics in the new system. The code has been modified 
to use an analytical calculation to determine these new 
coefficients. The method of calculation is described and 
some implications of this formulation are presented. 

I. INTRODUCTION 
In linear and circular accelerators, quadrupoles are used in 

an alternating-gradient configuration for strong beam 
focusing [2]. The force on a particle due to an ideal, square- 
edged quadrupole is linearly proportional to the radial 
distance of the particle from the center of the magnet. Real 
quadrupoles have perturbations that introduce higher 
harmonics in the field [3]. It is desirable to limit the higher- 
order field components of the magnetic elements as much as 
possible, except in special cases such as sextupoles used for 
chromaticity corrections. For LAMPF’s 750-keV proton 
transport, higher-order fields must be measured and corrected 
to better than 0.1% of the quadrupole field in the region of 
the beam [4]. If higher-order fields are present, tails will be 
introduced causing an effective emittance growth (the fields 
are conservative so there is no real emittance growth). 

After assembly and as part of the fabrication and quality 
assurance process, magnets are measured with rotating coils 
[5]. The data are analyzed with the code HARMAL. This 
code gives the magnetic center offset, the harmonic 
amplitudes, and the integral of the quadrupole gradient. 
These results are used to determine the quadrupole field 
quality and to allow suitable first-order modeling of the 
magnet in codes such as TRACE [6] or TRANSPORT [7]. 

The magnetic field center and mechanical center are often 
misaligned. Relative misalignments of greater that 
0.25 mm are often due to fabrication errors and can be 
corrected. Smaller errors can be corrected by aligning the 
magnetic center instead of the mechanical center to the 
beam axis. In addition, the harmonics must be calculated 
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about the magnetic center instead of the mechanical center. 
The algorithm for this transformation has been derived and 
will be shown. 

JIFIELDDESCRIPTION 

General Field 

The equations for a static magnetic field in a current free 
region can be expressed as a scalar potential satisfying 
Laplace’s equation 
v2u?=o. (1) 
Cylindrical coordinates are used, with the z-axis in the beam 
direction. Using separation of variables, one solution to 
Laplace’s equation is \ 

Q(r,‘p,“)=-gJ& 2 ’ r2j+n 5 ‘j 
n=O 0 1 

j=oj!(j+nY 
(I! 

~(Fn(k)cos(kz)+Gn(k)sin(kz))cos(ncp+cpn) . (2) 
Fn(k), G,(k), and cpn are the coefficients determined to fit 
the field in the region of interest. The magnetic field is 
defmed by 
s=-V#. (3) 

The nth harmonic is the term associated with 
cos(ncpccpn). Note that in the full three-dimensional field, 
the radial dependence of the nth harmonic is r2j+‘; in 
particular, the quadrupole (n=2) harmonic has a radial 
dependence r2j+l, where only the j=O term is linear. A pure 
n=2 quadrupole has non-linear terms, especially in the 
fringe fields where there is a strong z-dependence. 

Field in Two Dimensions 

In many cases the full three-dimensional problem may 
be reduced to a two-dimensional problem in polar 
coordinates. For example, if the field is constant along the 
z-axis, except at sharp boundaries, the problem can be 
approximated by a two-dimensional solution. Also, at high 
energies, where the particle’s transverse position is 
approximately constant as it traverses a magnet, the force 
on the particle can be treated as an impulse proportional to 
the integral of the field over z. This integral reduces 
determination of the field to a two-dimensional problem. 
Solving Laplace’s equation in two dimensions or 
integrating over the potential given by equation 2 leads to a 
solution 

Q(r,cp)=-2 Fn(k=O)2rncos(np+cpn). (4) 
n=O 
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This two-dimensional potential can be equivalently 
expressed its 

0(r,(p)=- %A nrn cos(mp) + B,r” sin(ncp) . (5) 
n=O 

The radial term of the nth harmonic of the field given by 
equation 3 is now proportional to rnl, and the quadrupole 
n=2 term is then linear in r. 

Definition of Field Center 

The center of the field is defined as that point at which 
the field is identically zero. This point, if it exists, will be 
represented (rc,cpc). There may not be a point where the field 
is zero; a pure dipole field is not zero at any point. For a 
quadrupole magnet, a good approximation can be made by 
finding the point (rc,(pc) such that the quadrupole 
component is opposite to and cancels the dipole moment. If 
the origin of the coordinate system is at (rc,qc), then the 
n=l dipole coefficients are equal to zero. If the dipole 
coefficients are equal to zero, then the field is zero at this 
origin. 

Coordinate Translation 

One can translate the coordinate system such that the 
origin of the new coordinate system is at the point (rc,& 
of the old coordinate system. Fig. 1 represents the 
translation between the two coordinate systems. The 
translated coordinate system is represented by a prime. 
Given any translation of the origin by (rc&), the potential 
in the this coordinate system is 

cD(r’,cp’) = - 2 Air’” cos(ncp’) + BLr’” sin(ntp’). (6) 
n=O 

The coefficients in the new coordinate system, AA and B’,, 
and the coefficients in the old coordinate system are related 
by 

A:,=% p! rPpn [ Ap cos((p - n)cp,) 
p=n n!(p-n)! c 

+Bp sin((p - nh)] i-d (7) 

B’,= 2 p! rPVn[-Apsin((p-n)cpe) 
p=n n!(p-n)! ’ 

+Bp cos((p - n)cp,)] . (8) 
This relation was derived by expressing the potential in 
Cartesian coordinates and translating to the new coordinate 
system. The polynomial was expanded and the coefficients 
of each order determined. The system was transformed back 
to polar coordinates and the relations 7 and 8 were found 
when the potential was written in a form such as 
equation 6. 

The old harmonic amplitudes that determine a new 
harmonic amplitude are equal or greater in order than the 
new harmonic amplitude being generated. For example, the 
quadrupole amplitudes for n=2 in the new coordinate system 
are derived from the n=2 and all higher harmonic amplitudes 
in the original coordinate system, but are independent of the 
dipole, n=l harmonics in the original system. If, in the 
original coordinate system, there are only dipole, n=l, and 
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Figure 1. Representation of a general coordinate 
translation. The origin of the new coordinate system 
is translated from the old coordinate system by the 
vector described by (rc, ‘p,J. 

quadrupole, n=2, harmonics, then there cannot be any 
higher-order terms introduced by a translation of 
coordinates, and the magnitude of the highest non-zero 
harmonic cannot be reduced by a translation of coordinates. 
These conclusions all follow from an inspection of the 
relations given by equations 7 and 8. 

III. MEASUREMENTS 

Rotating Coil Method 

One method to measure the harmonics as expressed in 
equation 5 is with the use of a rotating coil as represented 
in Fig. 2. By making the coil long compared to lhe field, 
the results are essentially the integral of the field over z. As 
the coil is rotated it cuts through the BQ component of the 

field, generating a voltage proportional to -d& 

By measuring the voltage across the coil, the integrated Bq 
field can be determined as outlined below. 

Data Analysis 

At LAMPF the code used to analyze the harmonic data 
generated by the rotating coil is HARMAL. The coil steps 
through a series of angles, and at each angle a voltage is 
measured proportional to the integrated current out of the 
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coil. The voltage is also proportional to the integrated field 
through the coil at each angle 

v(v) = Jdzq 

= f’,-d,r”-’ sin(ntp) +nB,r”-’ cos(n’p) . (9) 
n=o 

The code determines the coefficients An and Bn by a Fourier 
analysis of the voltage V(cp). 

Figure 2. Representation of a rotating coil showing 
its relation to the cylindrical coordinates. The coil 
is of radius R and rotates about one of the wires. 

Measurement and analysis of a quadrupole magnet 
usually have a small n=l dipole amplitude caused by some 
misalignment. HARMAL determines the field center (rc,cpc) 
at which the field is zero [8]. This is done by determining 
the harmonic representation of the field in the original 
coordinate system and then using Newton’s method to 
determine where the field is zero. The starting point for 
application of Newton’s method is the coordinate at which 
the dipole moment is canceled by the quadrupole moment. 

Once the translation is determined by HARMAL, the 
harmonic amplitudes must be redefined in the new 
coordinate system. HARMAL was modified in 1990 to 
transform the coefficients using the relations specified by 
equations 7 and 8. The relations and the code were checked 
against numerically generated fields and simple analytical 
fields that could be translated independent of the code’s 
translation. The code was then required to translate the fields 
back and obtain the same result as the original field. 
Agreement was found to the numerical accuracy of the code. 

IV. CONCLUSION 
To reduce effective emittance growth and tails, higher- 

order harmonics must be reduced to about 0.1% of the 
fundamental quadrupole component. To reduce steering 
effects of quadrupoles, the quadrupole field center must be 
aligned to the beam axis to better than 0.25 mm. The 
harmonic components and field center can be measured with 
a long rotating coil. At LAMPF, the data are analyzed with 
the code HARMAL. HARMAL determines the coordinate 
translation that puts the origin at the field center where the 
field is zero. A new algorithm for determining the harmonic 
amplitudes in this translated coordinate system has been 

derived and incorporated into HARMAL. This 
transformation has been tested with a few simple cases and 
has been found to be correct in these cases. 
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