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Abstract II. COMPARISON ON OPTIMUM COOLING 

A comparison has been performed between coast.ing 
and bunched particle beams pertaining to the mechanism 
of stochastic cooling. In the case that particles occupy 
the entire sinusoidal rf bucket, the optimum cooling 
rate for the bunched beam is shown to be the same 
as that, predicted from the coasting-beam theory usiug 
local particle density. However, in i,he case that particles 
occupy only the center of the bucket, the optimum rate 
decreases in proportion to the ratio of t,he bunch area 
t,o the bucket area. Furt,hermore, it has been shown for 
both coasting and bunched beartts that particle nroti~~n 
is stable upou signal suppression if the amplitude of the 
gain is less than twice the optimum va.lue over the entire 
frequency bandwidth of the cooling system. 

A. Coasting Beam 
Consider a beam of N charged part.icles asimuthally 

distributed along the accelerator. The increment V,, in 
z’ = ds/do that is experienced by bhe ith parbicle per unit 
time at the kicker, is proportional to the displacement zp 
of all tlte particles at the pick-up, 

where 

j=l 

uij = -3 2xJm g G (m+Wj) eim(wj-vc)t. (2) 

z + m- 00 

1. INTRODUCTION 

St.ochastic cooling for bolh coasting and bunched 
beams[l--71 has been successfully applied to many accel- 
erators. Theories, mostly using Fokker-Planck approach, 
have been developed t!o investigate the particle motion. 

Here, 7nI = m 6 v*, V, is t.he transverse fnue, G(w) is the 
gain of the cooling system, w; is the revolution frequency 
of the ith parbicle, wg is the average revolution frequency, 
and ,& is the Courant-Snyder parameter. The superscript 
P and K denote values at tlte pick-up and the kicker, 
respectively. 

This paper provides an analytic comparison between 
coasting and bunched beams on t,he cooling mechanism. 
In section II, the optimum cooling rates for coasting 
and bunched beams are derived from the Fokker-Planck 
equations. In the case that part,icles occupy the entire 
sinusoidal rf bucket, the optimum rale for the bunched 
beam is s11own to be the same as that predicted from 
the coasting-beam theory using local particle densif,y. 
However, in the case lhat particles occupy only the center 
of the bucket, t,he optimum rate decreases in proportion 
to the ratio of the bunch area to the bucket area, which 
contradicts the coasting-beam prediction. In section III, 
the effect of signal suppression is evaluated based on the 
equations of motion. It is shown that the particle motion 
under cooling is stable if the amplitude of the gain of 
the system is less than twice the optimum value over the 
entire frequency bandwidth. 

It is convenient to describe the transverse motion of 
the particles in terms of lhe angle- action variables ‘p and 
1 that are generated from the original variables z and z’ 
by a generating function 

The equations of motion thus become 

y’=L+Up, 
A 

I’ = u,, 

where 

VI = -J2P,IsinipU,f, U, = -Jp,/21sincpU,4. (5) 

Although the discussion is restricted to transverse 
stochastic cooling, it has been found that i.he conclusion 
is also true for longitudinal cooling, where the analysis 
is complicated by the mixing factor that depends on 
longitudinal particle distribution. 

Evolution of the t,ransverse dist,ribution function p can be 
described by a transport equation, which is oblained by 
averaging the two-dimensional Fokker-Planck equation[6] 
over ‘p, 

NJ 
st= -g (F!P) -t f”l: (Dg) . (6) 

Neglecting the t,hermal noise of the cooling system, the 
coefficients of coherent correction F and dXusion D can 
be evalualed 
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where ( ) denotes the average, and 

F” = - wo sin v, AdPK CQ 

2x 
c G (mkwi) e-imAwiA6PKlwo 

77%=--m 

TP LIZ ~ W&J (wi) f- IG (m*w) I2 - 
4a L T?&=-m Iml 

(8) 
Here, p(wi) is the density in frequency seen by the test 
particle i, and AePK is the azimuthal distance in radian 
between the kicker and the pick-up. The factor containing 
the difference Awi in revolution frequency represents “bad 
mixing”. Because F and D are both independent of q, 
the cooling rate can be obtained by integrating Eq. (6) 
using[6] relevant boundary conditions, 

T-1 _ ’ d(1) _ FO+ D” 
-(I) dt 2 . 

The average gain G,t to achieve the optimum cooling 
rate 7~: is then 

G-1 - wo(P(wi)) 
opt - 2(n) 

where Anfo is the frequency bandwidth, and (n) is the 
average harmonic of the cooling system. 

B. Bunched Beam 
Consider a bunch of NO particles performing syn- 

chrotron oscillation with frequency Ri and amplitude ri. 
Uij can now be expressed 

Here, p(J) is the particle density, and .I represents the 
longitudinal phase-space area enclosed by the particle 
trajectory. The rate of change in synchrotron-oscillation 
frequency under a sinusoidal rf voltage is[6] 

cm(J) 
dJ 

where h is the rf harmonic number. 
The average gain to achieve the optimum cooling 

rate r&i can be similarly obtained. Because the number 
of significant synchrotron sideband (k) ((k) = (n)wo(~)) 
is typically much larger than 1, J+ in Eq. (14) may 
be replaced by their asymptotic forms. Employing the 
identity 

m 

J;(z)+2~J;(z)=l, 06) I=1 
the optimum gain can be derived 

G-1 = Anwo(p(ni)) 
opt +j2 

(17) 

C. Comparison 

In the case that particles in the bunch occupy the 
entire rf bucket, 

Uij = $ 2 5 (-‘)’ ei*‘p Ji (mwo7j) G (m*wo - 2n.j) 
m=-oo(=-oo a-z 

~~p~~b~~ 

pressing the 
m 00 

n=--00 k=-cc 
(11) 

where Jl is the Bessel function of lth order, and do is the 
initial phase. The coefficients of the transport equation 
(Eq. 6) in terms of the action variable can be evaluated 

F” = - wo sin V,AePK 

27r 
5 2 G(m*wo-If&) 

m=-00 k-m 

x paiAepKfwl JI” (WOTi) 

(12) I 

Do=2 2 2 P(J’) 
1=-w k=-oo 

II n(J’)=kn(J)/l 

x -i IGD (-1 la + IGD (+) 1’ + me [GD (-) GD (-)I}, 

W) 
where eilniAOpK/wo represents “bad mixing”, and 

GD (*I) = 2 G ( ~*WO f lL?j) JFl( -OTj) Jyk (-OS). 
n&=1 

(14 

(18) 

An in synchrotron-oscillation frequency is 
to the zero- amplitude frequency Sl,. Ex- 
oscillation amplitude 

(7) = & 
/-- 

${W) M &, (19) 

Eq. (1’7) becomes 

T.-i x In)“lAwi) 
2rhNo ’ (20) 

where (Awi) is the mean spread in revolution frequency. 
Compared with Eq. (lo), the optimum cooling rate for 
the bunched beam is the same as that predicted from the 
coasting-beam theory if 4hNo is considered the effective 
number of particles in the ring. 

In the case that particles in the bunch occupy only 
the center of the bucket, the spread As2 is small compared 
with 0,. Consequently, coasting-beam prediction is no 
longer applicable. In order to demonstrate the difference, 
consider the situation when the peak rf voltage is in- 
creased while the bunch area is kept constant. According 
to the coasting-beam theory (Eq. lo), the optimum cool- 
ing rate is unchanged because the effective density (p(wi)) 
is unchanged. However, according to the bunched-beam 
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theory (Fq. I7), the rate decreases in proportion to 
e-1/2. Cooling becomes difficult because of the effec- 
tively higher particle density in spnchrotron sideband. 
Define the bucket, lilling rat,io as the ratio of the bunch 
area to the bucket area, Fig. 1 shows the change of opti- 
mum cooling rate calculated by assuming constaut bunch 
area, and by including synchrotron sideband overlapping. 

0.10 

7 Jz 
III. CONDITION FOR BEAM INSTABILITY 

A. Coasting Beam 
In the previous section, t,he nnclisturbed vn111e rpo 

has been used (Eq. 1) as an approximation for the 
transverse displacement z ‘. III reality, the solution aP to 
the equations of motion valid to the first order in U,, is 

,a 
‘2 

0.05 

2P II ppo I 'i -JZlt 
dt’ COSV,Wi (t - t’) 5 iZ;Uij (t’) . 

j=l 

(21) 
The center-of-mass ctisplacement can be solved]31 by using 
the Laplace-Fourier transformation, 

x, (t) = 2 e-imwjtzjP = 5 
eiTllWjt*,PO 

3 
(22) 

j=l 
j=l 1 -t irn (77l'Wj) ’ 

where F,,, is transformed from 

Frn (t) = woG CmfWo) “, imwjt cos y w ,i 

2* )-e + f . (23) 

j=l 

I I I 

I I I 
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Figure 1: Opt.imnm rooling rate for the bunched beam 
as a function of the bucket Iilling ratio. 

Solving Eq. (26) is equiva.lenb to obtaining the eigenvalues 
of a matrix F, which is drfined with r’,, as its elernent~s. 
The instability that most likely occurs corresponds to the 
largest eigen-value being equal to 1. Using Eq. (16), this 
criterion is 

Instability occurs if the denominator vanishes, i.e. 

l = WOG (mfwo) P(wj) -,- ~WOG P(W) dW l - AT~C: (m'wn) p (nj) + i.~~{~~~~p diZp(!2) N ___- ---- 
4in* W tWj 

9 2nkm.f Tj 2n2km*Ti J-.---- fl-ilj. 

(24) (-w 
where ‘P denotes the Cauchy principle value. Compared 
wi1.h Eq. (lU), Eq. (24) . 1 I im ) ies that particle motion is 
stable upon signal suppression if the magnitude of the 
gain is less than twice the optimum value Gopt over the 
entire frequency bandwidth of the cooling system. 

Compnrrd wit.11 Fq. (17), t,his again implies t,liat, j)arbicte 
motion is sbable if the magnitude of the gain is less 
than twice the optimum value over the entire frequency 
bandwidth. 
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dyn (t) = c 5 c-i)” Jk (ThWoTj) Cik+~ewiknjtZJP. (25) 
k=-m j=l 

The Laplace-Fourier transform satisfies 

An (u) = 2,” (u) - 2 km (u) Fm, (Y), (26) 
7IL=-CC 

where k nL,,(~) is transformed from 

woG (m*wo) “, 
N 

J’mn (t) = -2K L C JI ("WOTj) JI (IwOTj) 

I=- 00 jzl 

XC 
-ilRjt 

cos u,wot. 

(27) 
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