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I. INTRODUCTION 

The growth of the quasi-steady-state motion of 
the coupled bunch oscillations in storage rings has 
been studied by means of a norrnal mode analysis to 
determine the beam stability. In this type of analy- 
sis, the initial amplitude displacements of the bunches 
are first written as a sum of the normal modes of the 
multiple bunch system, and then the stability of each 
mode is determined. If the amplitude of all modes de- 
cay then the amplitude of all of the individual bunches 
must eventually decay, and the motion is considered 
stable. However, if the beat frequency between the 
different modes is sufficiently high, compared to the 
decay rate of the modes, it is possible for the am- 
plitude of some of the bunches to grow temporarily 
before eventually decaying. Thus, even if all normal 
modes are eventually damped it is possible during 
the transient phase for the amplitude of several in- 
dividual bunch oscillations to grow and become lost. 
Mathematical complications also arise from a modal 
analysis when there is a gap in the bunch train atld 
the wake fields from the last bunch in the train dr- 
cays before arrival of the first bunch; for this ca.se the 
coupled bunch motion more nearly represents tllat of 
beam breakup phenomena observed in linacs. 

II. ANALYSIS 

.4. Simulations Results 

In order to illustrate how the transient behavior 
can result in large amplitudes for the motion of indi- 
vidual bunches, even though the initial amplitudes of 
the individual bunches are small and the amplitude 
of each bunch is damped, we consider the special case 
of a daisy chain. The daisy chain has the property 
that the wake field left behind by a bunch only di- 
rectly affects the next bunch. This is a special case of 
wake fields that decay in a time short compared to the 
revolution period of the ring. It is convenient to num- 
ber the’ bunches by the integer p where 1 5 ,v < P 
and to designate the leading bunch as number one. 
We denote the displacement of the pth bunch by I~, 
the time derivative of the displacement by T;, and 
assume that only the leading bunch leas an initial dis- 
placement. 

The model we use consists of a ring with a single 
cavity in which both the wake field and the damping 
field are produced. $Yhen a bunch passes throklgh t,hc 

cavity it receives both a wake field kick proportional 
to the previous bunch displacement and a damping 
kick, from a feedback system or radiation damping, 
proportional to the time derivative of the bunch mo- 
tion. We use the turn number n in which the bunch 
passes through the cavity as the time variable, i.e. 
t = nT with T the revolution period. Then passage 
through the cavity results in 

4~: (n) = HRxp (n - 1) - 2cuzi (n) 

4~; (n) = Rxp-l (n) - 2crzk (n) p # 1 
(1) 

in which the wake field kick is given by R, and H = 0 
when there is a gap in the beam train and II = 1 
when the beam train is continuous During the time 
between passages through the cavity the bunch oscil- 
lates about its equilibrium position z = 0. For the 
case of longitudinal motion where the oscillation fre- 
quency is much less than the revolution frequency it is 
not important whether the cavity is at one place in the 
ring or spread uniformly around the ring. Thus the 
difference equations of motion can be approximated 
by the differential equations 

r:(n) + 2crz~(n) + k2rl(n) = HRxp (71 - 1) 

(2) 

2$(72) + 2&x;(n) + k 2xp(4 = R+-l(n) P # 1 

in which k = 27r~5, U, is the number of oscillations per 
revolution, and a is the decay rate of the oscillation 
amplitude. 

A sirnulation program has been used to solve the 
difference equation, Eqn. 1, for the oscillation ampli- 
tudes, up, as a function of turn number. The ampli- 
tudes as a function of turn number are shown for the 
first five bunches in Fig. 1 for three different damp- 
ing rates. In Fig. l(a) it is clear that damping rate 
is insufficient to prevent the transient buildup for the 
oscillat.ion amplitjtldes for the bunches p > 4 before 
they decay. IIowever, in Figs. l(b) and l(c) it is not 
as clear whether the decay rate is sufficient to limit 
the trausient amplitude buildup for the bunches with 
11umbrrs grcat,er t.han five. The values for the cou- 
pling fields and t.he decay rate that have been used 
in these simulat.ions are much larger than would be 
present in an actual storage ring. If one runs the sim- 
ulation for realistic values of the coupling fields and 
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damping rates and for a sufficient number of bunches 
the maximum amplitude of each bunch can be deter- 
mined, but, the number of turns that we must run to 
find the maximum amplitudes of all P bunches goes 
like P/CY which places a burden on the computer. We 
present below an analytic method that one can use 
to find the maximum amplitude and the turn num- 
ber when it occurs. The circles shown on Fig. 1 are 
the maximum amplitude of each bunch and the turn 
number when it occurred as given by the analytic cal- 
culation below. 
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Figure 1. Oscillation amplitudes of the first five bunch- 
es versus turn number for R/k = 0.1 and v = 0.05. 
l(a) cr = 0.025, l(b) Q = 0.045, and l(c) o = 0.05. 
Circles represent analytic calculation of the maximum 
amplitudes. 

B. Analytic Results 

We write for the bunch displacement 

~~(72) = yp(n)e-Une2’n (3) 

with g2 = k2 - a’. We use the slowly varying ampli- 
tude and phase approximation in which we ignore yc 

compared to kyk to obtain 

I -iR 
y,+1 = 2kyp 

where we also have assumed that a2 << k2 so that 
ii x 6. 

At turn n = 0 we have the following initial con- 
ditions: yr = all yi = 0 and yP =I y; = 0 for p # 1. 

The solution to Eqns. 3 and 4 is given by 

The amplitude of the oscillation up may be written as 

01 

up = Jr2 + (z;/k)2 = @ (6) 

(7) 

From Eqn. 7 #we find that the maximum amplitude 
ii,+1 and the turn when the maximum occurs ^n are 
given by 

edp 

and 

(8) 

P n= - 0 CY 

The values of the coupling and the decay rate used in 
the simulations for Fig. 1 have been substituted into 
Eqn. 8 and the results are plotted in Figs. 1 and 2. 

Finding the maximum oscillation amplitudes from 
a simulation program requires one to run the program 
for the number of turns in a damping period times the 
number of bunches in the ring which, for large multi- 
ple bunch colliders, is of the order of millions of turns. 

W’e note that the maximum amplitude of i;, is 
always bounded, but for large values of p the max- 
imum amplitude can become quite large after many 
turns. Clearly, in a practical ring some restriction on 
the maximum amplitude for all bunches must be re- 
quired. We specify that the coupled bunch motion 
will be acceptable if all oscillation amplitudes of the 
bunches are less than the initial amplitude of the first 
bunch, i.e. ii, 2 ~11. This requires that 
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Figure 2. Maximum amplitudes of the bunches versus 
turn number when maximum occurs. 2(a) o = 0.025, 
2(b) (Y = 0.045, and 2(c) (Y = 0.05. 

(g$-’ < (-g (9) 

If we use Stirlings formula for large p we have c ) i ’ x 

pe-’ which yields the following criteria for the re- 
quired damping rate 

for acceptable motion in the sense that GP < al for 
all p. 

C. Normal Mode Analysis 

For the case where the bunch train is continuous 
(H = 1) it is easy to solve Eqn. 2 for .&(n), the 
amplitude of the mth normal mode. We find that the 
displacement of the pth bunch for the mth mode can 
be approximated by 

11 

where again we havIe assumed that k >> ym and 
k >> Q, so that ym is given by 

?Re(y,) = gsin ( 2rr:+ “> 

and 

12 

Qm(r,) = -2~0s 
c2=7+ “1 

The modes which are stable have %e(y, - CY) 5 0, 
which yields the condition for stability of all of the 
modes 

R 
a>---. 

- 2k 
13 

‘I’his conditioil is exactly the same condition as we 
obtained in the transient case (Eqn. 10) when only the 
first bunch in the train had an initial displacement. 
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