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I. INTRODUCTION 

During collider studies (1989-1990) it was observed that 
with large bunch intensities (>60x109 particles per bunch) in 
the Tevatron, the beam would go unstable if the machine ran 
close to the coupling resonance (v+-v- < 0.005). Simple 
head-tail stability only requires the horizontal and vertical 
chromaticities (xx and xy) to be positive. Since the beam 
went unstable even when this condition was met, a set of 
cxpcriments were performed which showed that if there is 
significant linear coupling the head-tail stability criterion is 
modified. In fact, it was observed that the Tevatron could 
operate stably with either the horizontal or vertical 
chromaticity negative if the machine was strongly coupled. 
Also, when the machine was strongly coupled, it was observed 
that with both the horizontal and vertical chromaticities 
positive, the beam in the Tevatron can become unstable. The 
purpose of this paper is to present a formalism for calculating 
head-tail stability. Then the predictions of the formalism are 
compared to data taken with the Tevatron. 

II. THEORY 

A. Head-Tail stability 

A naive model of head-tail stability says that a bunch of 
sufficient intensity goes unstable when one of the 
chromaticities becomes negative - when 

x(x,y) s dy < 0.0 

Here 6 = Ap/p is the off-momentum parameter, while Vx 
and Vy are the horizontal and vertical betatron tunes. This is 
an approximation referring only to the lowest order head-tail 
mode. Nonetheless, it is a useful rule of thumb that is 
adequate for most practical situations. 

Without proof, we conjecture that a similar expression 
holds when it is not possible to implicitly ignore the effects of 
residual linear coupling - due to solenoidal fields, rotated 
quadrupoles, and displaced sextupoles, et cetera. The 
uncoupled tunes are simply replaced by the coupled eigentunes, 

dv+ 
x* = -g < 0.0 

so that instability is now expected when one of the 
“eigenchromaticities”, x+ or x_ , goes negative. 

*Operated by the Universities Research Association, Inc., under 
contract with the U.S Department of Energy. 

B. Of Momentum Coupling Parameterization 

The eigentunes of on-energy (6 = 0) particles are 
conveniently parameter&d by 

v+ = ; 1 Qx + Qy If: [ (Qx - Qy12 + s21”2 1 (3) 

where q is the two dimensional “coupling vector”[ 1,21. In 
the limit of negligible coupling, 

I Qx - Qy I >> Iql (4) 

the eigentunes become the uncoupled tunes, Qx and Qy. In 
the limit of full coupling, when the uncoupled tunes are equal, 
the eigentunes have their closest approach, 

V+ = Qoi$ql (5) 

with a total separation of the length of the coupling vector. 
Three substitutions are made to generalize equation (3) to 
describe off-momentum behavior. They are 

Qx 
% 3 QY 

+ X,6 
+ xys (6) 

q 9 + k6 

where k may be called the “chromatic coupling vector”. The 
general parameterization now becomes [3] 

v+(S) = it(Q~+Qy) + @x+XY)S (7) 

f [((Qx - Qy) + 1Xx - xyP92 + (q + k S)21*‘2 1 

This incidentally suggests that it may not be possible for 
the eigentunes to become arbitrarily close, even if the 
unperturbed chromaticities are set to zero, the unperturbed 
tunes are equal, and the coupling vector q has been corrected 
to zero. The minimum difference is approximately 

(V+ - V-)min z Ikl 3 
P 

(8) 

proportional to op/p, the beams finite momentum spread. 

C. Eigenchromaticities and stabiliry 

In principle the problem is now solved, since it is formally 
possible to differentiate equation (7) with respect to 6, and 
then impose the constraints of equation (2). This is rather 
messy and unilluminating. Instead, consider the following 
practical problem: if the chromaticities are xx and xy when 
Qx and Qy are far apart, will the beams be stable when the 
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tunes are brought together? When Qx = QY = Qo, equation 
(7) becomes 

v+(S) = Qo ++x+Xy)S (9) 

rt ;[ (xx-xy)2s2 + (q+kS)2]1/2 

Now consider two cases - when the on-energy lattice has been 
perfectly decoupled, so that q = 0, and when S is small. 

In the case of perfect decoupling the eigenchromaticities are 

x+ = i @, + xy) I!I ; [(xx - “y)2 + k2]li2 (10) 

and equation (2) reduces to a single stability criterion 

k2 
xxxy ’ -Ji- 

This shows that the area of stability in the upper right quadrant 
of @, ,X y) space shrinks significantly if k is large. 
Instability near the origin of this space has been observed in 
the Tevatron, when the unperturbed tunes are brought together. 

In the second case, expanding (9) to fist order in S gives 

X+(S) = +,+xy+ 21 + O(S) 

and the stability condition becomes 

02) 

xx + xy > y 

This is less restrictive than equation (ll), since the boundary 
line is no longer a hyperbola, but a straight line entering three 
of four quadrants in (Xx,X,) space. Instability has also been 
observed in Tevatron collider runs when the unperturbed tunes 
are marated, after the unperturbed chromaticities have been 
accidentally tuned so that one of them is large and positive, 
while the other is small and negative. 

The apparent contradiction between equations (11) and (13) 
that arises when q is allowed to become small is resolved by 
properly considering the higher order term in equation (12). 
Note that both stability conditions (11) and (13) implicitly 
assume that it is the S = 0 eigenchromaticity that is 
important, in keeping with the spirit of equations (1) and (2). 

III. EXPERIMENT 

A. Setup 

The Tevatron was operated with horizontal and vertical 
tunes of 20.408 and 20.419, respectively. The machine was 
decoupled using two somewhat orthogonal skew quadrupole 
circuits. The angel between the coupling vector associated 
with the two circuits was measured to be approximately 31°. 
The minimum tune split that could be achieved using these 
circuits was approximately 0.002, and 0.003 for uncoalesced 
and coalesced beam, respectively. High intensity beam was 
achieved by coalescing 11 bunches with approximately 8E9 
particles/hunch into one bunch with intensity of 

approximately 80E9. The tune split (V+ - V-) is adjusted 
using the correction quadrupole circuit Qx, which in principle 
changes only the horizontal tune (V,). The chromaticity is 
adjusted using the chromaticity sextupole circuits (Cx,Cy). 
The chromaticity is measured by varying the RF frequency and 
measuring the change in tune. The chromaticity measurement 
is also made with Vy - Vx > 0.01. The tunes are measured by 
spectrum analysis of signals from horizontal and vertical 
Schottky plates[4]. 

B. PartI 

A high intensity proton bunch (>60E9) was injected into 
the Tevatron. The chromaticity was set such that Xx = Xy = 
x0. Then, the Qx circuit was slowly varied to reduce the tune 
split from 0.010 to 0.003. The above procedure was repeated 
for several values of X0 (4,3,2, and 1 respectively). For X0 
less than or equal to 2 units, the beam went unstable when Qx 
was set to minimize the tune split (0.003). Substituting this 
result into equation 11 gives. 

kl 4. 
Point A in figure 1 shows our result. Equation 13 implies 

that the cross hatched area for Xx > 0 and Xy > 0 will be 
unstable when the tune split is small (machine is coupled) and 
stable when the tune split is large (machine is decoupled). 

Next, the Qx circuit was used to place the tunes on top of 
one another (minimum tune split 0.003). Xx and Xy were set 
to 8 and -3 units, respectively, and the machine was operating 
stably at point B in figure 1. Then the Qx circuit was used to 
separate the tunes. When the tune split was about 0.01 the 
vertical tune line on the spectrum analyzer went coherent 
(became very narrow) and total beam loss occurred in less than 
a second (i.e. beam went unstable). 

Point B in figure 1 shows our result, and implies that the 
cross hatched region , excluding the first quadrant, will be 
stable when the beam is coupled and unstable when the beam 
is decoupled. 
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Figure 1: xx verses xY stability curve. The 
points A and B are either stable or unstable 
operating points as demonstrated in Part I. The 
cross hatched region is also believed to be 
either stable or unstable depending the amount 
of coupling. 

1849 

PAC 1991



C. Part II 
.84 I I I 1 

The second part of the study used 20 uncoalesced bunches 
with approximately 8E9 particles/bunch in the Tevatron. 
Next the momentum (S=dp/p) of the Tevatron was varied by 
changing the RF frequency. The eigentunes (Vi.) were 
measured as a function of 6 for three different settings of the 
Qx circuit. The results of these scans are shown in figure 4. 
The sums and differences of the eigentunes (figures 2 and 3, 
respectively) were used to fit for the parameters in equation 7. 
The interesting results of the fits are that xx,xy, and q vary 
with Qx settings (see table 1). Any attempt to hold these 
parameters constant caused the fit to become rather poor for 
6>0. Also, a fit was done excluding the k term in equation 7. 
The results of the fit again required xx, and xy to vary with 
Qx while q remained constant at approximately 6.OE-3. One 
justification for including the k term in the fit was that it 
keeps the value of q consistent with the minimum tune split 
measurement (q<3.OE-3). 

Table 1: Fitted Parameters 
AQx 1 .OOOO JO30 *loll Average 

circuit 

2 
XX 

XY 
9 

cosorq) 
k 

fitted parameters 
.408 1 .4103 .4125 
.4183 .4189 .4197 

8.2 7.0 5.0 
-2.6 -1.8 -0.9 

St041 .0030 .0025 
1 1 1 

3.6 3.9 4.0 

value CF 

.4190 .0007 
6.7 1.6 

-1.8 1.0 
.0032 0.0008 

1.11 0.07 
3.8 0.2 

D. Conclusion 

There are two measurements that require the k term in 
equation 7. First, the unstable region in the first quadrant of 
figure 1 cannot be explained without including the k term. 
Second, the fit to the V+ vs 6 was not consistent with the 
measured minimum tune shift if the k term was ignored. 
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Figure 2: v+ + v-verses 6 - the curves are the best fit 
of the data to a straight line. 
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Figure 3: v+- V- verses 6 - the curves are the best fit 
to the data. Table 1 gives the fit parameters. 
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Figure 4: Eigentune verses 6 - the points are the 
measurements and the curves are equation 7 with the 
parameters from table 1. 
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