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Abstract 

A theoretical model for the longitudinal instabilities of 
intense beams in a transport channel with complex wall 
impedances is presented. A dispersion equation is derived to 
relate the growth rates of the slow waves to all the relevant 
parameters including the space charge, the real and imaginary 
parts of the complex wall impedances. The growth rates for 
different wall structures are compared and discussed. 

I. INTRODUCTION 

The induction linac is a promising driver for Heavy Ion 
Inertial Fusion. An important issue in the design of such 
induction linacs is the longitudinal instability [1,2,3,4] which 
is predicted to develop and is detrimental to the beam. In 
contrast with the accelerators for high energy physics, the 
beam current in induction linacs as drivers for heavy ion 
inertial fusion is as high as kilo-amperes, while the beam 
particle velocity is only sub-relativistic. Thus, the space 
charge force plays an important role in the instability analysis. 
Another important factor is the interaction between charged 
particles and induction gaps which are usually modeled by 
discrete R, L, C circuits in the low frequency limit. Studies 
show that the impedance of induction gaps is a function of 
frequency and could change from inductive to capacitive as the 
frequencies shift. This requires different circuit models at 
different frequency ranges. Thus, it is desirable to have a 
theory which can analyse the instability in a transport channel 
with general wall impedances, rather than a specific circuit 
configuration. In a previous paper [S] we developed a 
theoretical model to relate the growth rates of the slow waves 
to the beam space charge and the complex impedances of the 
transport channel. This paper is an extension of the previous 
one. The derivation of the dispersion equations and the 
expressions for the genera1 longitudinal field taking into 
account the real and imaginary parts of the wall impedance is 
given. The physical consequences of the resulting equations 
are discussed. The growth rates for the wall modeled by three 
different circuits are also compared. The results show 
explicitly how a capacitive wall can dramatically reduce the 
growth rate of the instability. 

II. DERIVATION OF THE DISPERSION 
EQUATIONS 

The longitudinal beam dynamics can be described by the 
lincarizcd cold, one-dimensional fluid mode1 which consists of 
the continuity equation and momentum transfer equation: 
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where k(z,t) and v(z,t) are the line charge density and the 
particle velocity, the subscripts 0 and 1 representing the 
unperturbed and perturbed quantities, respectively, E&t) is 
the longitudinal electrical field induced by the a. c. component 
of the beam current, and 77 = q/(mr3) denotes the ratio of the 
charge and the “longitudinal mass” of the charged particles. 
Under the long wavelength condition, the field E,(z,t) can be 
calculated as [6] 

EZ(z, t) = - 

(3 

where EO is the permittivity of free space, g is a geometric 
factor of order unity, and E,(z,t) is the field induced on the 
pipe wall of the transport channel and depends on the perturbed 
beam current and the properties of the wall. In the complex 
frequency domain this field is related to the perturbed beam 
current and the wall complex impedance Z,(s) per unit length 
as 

EW(k, s)= ‘~“dzjdtEw(z,t)e-‘ikzt”Li 
-- 0 

=- Z,iS)[voA+ s) +hovl(k s)]. 
(3) 

Solving Eqs. (1) to (3) by using Laplace transform in 
time and Fourier transform in space leads to the dispersion 
equation 

k*wA 
(s+ ikv O)* +---++sT&oZW(s)=o 

4n COY 
(4) 

Though this equation is exact in this theoretical model, its 
solution depends on the wall properties, namely Z,(s), and can 
not usually be solved analytically except in the simplest cases 
such as the pure resistive wall. Approximations have to be 
made for proper interpretation of the physical consequences of 
Eq. (4). In the real frequency domain the wall impedance per 
unit length has the general form 

Z,(o) = R(W) + ix(w) 
9 (5) 

where R(w) and X(w) arc the real and imaginary parts of the 
complex impedance. It is usually supposed that the zeros of 
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Eq. (4) associated with the circuit Z,(s) are not of interest and 
that the approximation may be made by setting s=-iwo=-ikvc 
in the last term of Eq. (4). Thus, one gets 

( s+ ikvo)‘- ik@ovoR (mo) + 

+k2q g 

4nEo$ 
-v2x(wo) h =o 

1 . O “0 O 
(6) 

In the above approximation we actually rewrite Eq. (3) as 

E ,(k, s> =- voht(k, s)[R( 0 o) -iX( w o)] 

=ikv; x(od w o hlk s> -R(” o)vo$(k, s) (7> 

where the perturbed beam current component bvt(k, s) in Eq. 
(3), which is usually much smaller than the term vohl(k, s) in 
most applications, is neglected. This equation shows that the 
real part of the wall impedance produces the field in the 
opposite phase with respect to the perturbed line charge 
density, while the imaginary part of the wall impedance 
produces the field that is 90° out of phase with respect to the 
perturbed line charge density. Inverse Laplace-Fourier 
transform of Eq. (7) yields 

x(0 0) 3x1 E&t)= v;,-,, -R(wo)vohl 
0 03) 

Therefore, the total longitudinal field acting on the beam can 
be expressed by 

EZ(z,t)=- 4 v. R(“o) 

(9) 

It is interest to note that the inductive impedance which has a 
positive imaginary part can reduce the space charge field and 
the capacitive impedance just acts in the opposite way. 

III. DISCUSSION OF THE GROWTH RATES 

The dispersion equation (6) has the general solution for 
the perturbed wave frequency and the temporal growth rate: 

where I is the beam current, Io=4x&omc3/q is the characteristic 
current of the charged particles, A is the wavelength of the 
growing waves, Zo=1/(~oc)=377 ohms is the characteristic 
impedance of free space, and Y+=(l+y2)“%1 with y being 
determined by 

1 

Y= 
2pr2 NW o>A --- 

t 

1 _ 2py2 X(wo)* 

g z. g z. 7. (11) 

Equation (10) is valid for y>O. In the above equations the 
subscript 0 is dropped for p and y for simplicity. 

An interesting parameter range is y<<l, or 

213y2PY” 0) + XC” o>P < < 1 ___ _ ._ _ .____ -. 
g 

zO (W 

which requires that the algebraic sum of the real and imaginary 
parts of the wall impedance per perturbation wavelength must 
be much smaller than the characteristic impedance of free 
space. In this case Eq. (10) can be approximated as 

I 
wr=kc[P&(+$~ If2 [ -q”‘;““lj 

w i= ; kcj3 

. (13) 
For a pure resistive-wall where R(oo)=R and X(wo)=O, the 
slow-wave growth rate is 

l/2 
w i= kc% A :, (1. (14) 

Thus, the resistive instability growth rate is proportional to 
the resistance per unit length of the transport channel. This 
growth rate is also proportional to the wavelength of the 
perturbation, implying that the slow waves of perturbation 
with the fundamental frequency is more serious than the higher 
harmonics. Equation (14) also indicates that the resistive 
instability growth rate is higher for a beam with higher current 
and lower energy, This is the case in the induction linac as 
drivers for Heavy Ion Inertial Fusion. If the pipe wall is 
inductive, e.g. Z=R+iw& one gets 

Therefore, the addition of an inductive component increases the 
growth rate in comparison with Eq. (14). For a capacitive 
wall modeled by a circuit of R and C in parallel, Eq. (13) can 
be rewritten as 
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b+ Po9LJ 
As expected, the growth rate of the slow wave is reduced when 
a capacitance is added. This result agrees with ref. [1] which 
states that in general the capacity reduces growth rates 
compared with the case of pure resistance by lowering the 
impedance as frequency increases. 

Fig. 1 shows the relative growth rate versus the relative 
time constant of the wall impedance. In this example the 
growth rate for a pure resistive wall is set to unity. The lower 
branch of the plot is for the capacitive wall with z/z,=RCw, 
while the upper branch is for the inductive wall with 
r/r,=w,L/R. The curves A-l and A-2 illustrate the results 
from Eqs. (14)-(16) where the 
R=lOO Q/m and wo=27cx lo* s P 

arameters used are p=O.l, 
. The growth rate for the 

capacitive wall decreases rapidly when the capacitance is 
increased. By contrast, the growth rate for an inductive wall 
is slightly increased. 

If the condition (12) is not satisfied, the results from Eqs. 
(13) to (16) are not valid any more. In another extreme case 

2py2LR(” 0) + x(w OP > > 1 

0 7 

the perturbed frequency and growth rate can be exprcsscd by 

1 ;+c~/j~ ;tR’;fA]; (17) 

1 wizT k+$~y;~]1’2 , (l8> 

impedances. The temporal growth rate of the instability can 
be dramatically reduced by a capacitive component of the wall 
impedance along the transport channel. By contrast, the 
inductive wall component could enhance the instability. 
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Fig. 1 . Relative growth rate Wi/Oi,R vs. the relative time 

constant VCO for a wall modeled by R, L in series or R, 

C in parallel, where Oi is the growth rate for inductive or 
capacitive wall, ai,R is the growth rate for a pure 

resistive wall, T=RC for the capacitive wall, or T=L/R for 
the inductive wall, and ~=1/00. The curves A-l and A-2 
illustrate the results from Eqs. (14)(16) with the 
parameters p=O.l, R=lOO Q/m and wu=2?tx108 s-l The 
curves B-l and B-2 represent the results of Eq. (18) 
where the parameters are B=O.3, R=300 R/m and 
wo=27tx106 s-1. 
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