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Abstract 

A simple model of a beam at transition driven by a stor- 
age ring impedance is formulated in the framework of the non- 
linear Vlasov equation. This yields a set of coupled equations 
of motion describing time evolution of a single coherent mode 
and the overall equilibrium density distribution function. At 
transition, contour integration in the dispersion relation can be 
carried out analytically and a simple closed formula for the co- 
herent frequency is obtained. From the resulting stability dia- 
gram further conclusions about the growth time of the mi- 
crowave instability and the longitudinal emittance blowup at 
transition are derived. 

I. INTRODUCTION 

One would like to sort out purely kinematic contributions 
to the emittance blowup (due to the Johnsen and Urnstatter 
effccts)l from the intensity dependent one caused by the 
microwave instability, possibly building up at transition. The 
longitudinal phase space has a very peculiar structure; at 
transition the RF bucket does not exist in the usual sense and 
a beam can be considered a coasting beam to a good 
approximation. When the influence of the external restoring 
force disappears the beam is very susceptible to any fast grow- 
ing instability which may in turn (through nonlinear driving 
terms) reshape the overall longitudinal phase space of the 
beam. 

II. LONGITUDINAL BEAM DYNAMICS AT 
TRANSITION 

Consider an initially uniform distribution of particles in- 
side a storage ring modeled by a statistical density distribution 
function defined in a classical phase space as 

f(a,Q,t) = P(a,t) + C hn(a,t) e i0n 
, (1) 

n74 

where 0 is the azimuthal angle around the ring circumference 
and E represents the energy deviation from its synchronous 
value, E,. Here f(&,e,t) is normalized to the total number of 
particles in the storage ring, N. The phase space continuity 
equation which governs f(a,Q,t) can be written as follows 

* Operated by U mversities Research Association Inc., under 

& f(&,&t) + 0 $ f(E,e,t) + i $ f(E,e,t) = 0 . 

The revolution frequency, w, of a given particle depends on its 
momentum offset, Ap, via the momentum compaction factor, 
a. The fractional frequency shift is given by 

AW -=- 
00 ( 1 

a-h, 
Y2 

Where 

&!!2=lE 
PO p2Eo . 

(3) 

In principle the momentum compaction factor also exhibits 
some chromatic dispersion according to general expansion 

Right at transition, y = yt, the linear term in Eq.(3) disap- 
pears, since 

a,-~=0 
Y2 

(5) 

and the leading term in W(E) happens to be quadratic in E. One 
can summarize Eqs.(3)-(5) to the lowest leading term in E as 
follows 

W(E) = W, - K E2 , (6) 

where the coefficient K is given by the following expression 

(7) 

Here o+ is a purely lattice dependent parameter, which is easy 
to express in terms of azimuthal averages of the lattice disper- 
sion function3. 

The beam environment in Eq.(2) is modeled by the wake- 
field impedance of a storage ring represented in frequency do- 
main by Z(w). The energy of the beam changes by 

E = - ew, c i0n 
Zn$n(t> e t Z, = Z(nw,). (8) 

n#O 

where 
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o,(t) = - em, & jd~ hn(a,t) . 
-00 

(9) (15) 

Substituting Eqs.(l) and (8) into Eq.(2) and using orthog- Assuming a frequency dispersion given by Eq.(6), one can 
onality of azimuthal plane waves, one can rewrite Vlasov equa- rewrite the dispersion equation in the following form 
tion as a set of coupled equations of motion for individual az- 
imuthal harmonics of the distribution function. em, 2 

‘= %- ( 1 

1 
NZn202niK 

J 

2EW(&,t) 

dE(E+E)(E--t) ’ 
(16) 

$ f%,t) - eo, c 
a Zn*&*(t> z hn(E,t) = 0 * (10) 

n&l where 

ad 

$ hn(E,t) + inw hn(c,t) - ew, Z, on(t) 2 f(E,t) 

nw, - s1 
E2= nK . 

As was shown in the Appendix the contour integral in Eq.( 16) 
is given by Eq.(29) as follows 

c a - CW, Zn-m $n-mtt) s hm(EJ) = 0 . 
m+O d dE (E :zkt! z) = 2ni w(E,t) . (17) 

Here we introduce the instantaneous coherent frequency, fin(t), 
describing evolution of the n-th mode within a small time in- 

Therefore, right at transition, the microwave stability is 

tcrval (t, t’) according to the formula 
strictly governed by the Landau damping residuum term given 
by the right-hand side of Eq.(17). The last statement would 
translate to a global microwave stability at transition. 

hn(&,t’) = e - i %tt)tt - t’) h,(E,t), t I f . (12) Substituting Eq.(17) into Eq.(16) allows one to express the 

We also require that P(&,t) is a slowly varying function of 
coherent frequency of a given mode in the following form 

time compared to rapidly oscillating coherent modes. Including 
both assumptions one can rewrite Eq.( 11) as follows Q, = no, - 2nKo21n 

NZn 

( 

(two)* 
(2x)3/2 2nKo3 . 1 

(18) 

00 

h,(E) = (eWJ2 $f(E,tI nw -‘k tt) T& 
Taking into account multivaluedness of the above expression 

n 
j dE’ hn(E’). (13) one has to introduce appropriate cut-lines (connecting diffcrcnt 

- Riemann sheets of the general solution) at the branch points. 

As was pointed out by Landaus an appropriate integration of 
The growth rate, introduced as the imaginary part of the cohcr- 

Eq.(l3) leads to the following dispersion relationship defining 
ent frequency, is given by the following expression 

the coherent frequency, Q.,(t) 1 2 
- = -2apnwo g 
%r 0 Fn(O) 

1=f!2~Nzn IdE i[n$J~‘~n] ’ 
C 

(L4) wi1h F (0)=arcLanC>) 
n 

z =x +iy 

xn’ n n np 

(19) 

Here, R, and W(E), given explicitly by Eq.(6), define configu- 
ration of poles in the complex a-plane. 

III. STABILITY DIAGRAM 

The dispersion relation, given by Eq.(14), can be solved 
with respect to the coherent frequency, Q, then contours of 
constant growth rate, Im@), can be composed in complex 
impedance plane. Here we assume a simple Gaussian distribu- 
tion parametrized by CT = (E)~~ as follows 

For the purpose of this calculation we assume a resonant 
impedance centered at the frequency w,. 

One can see from Figure 1 that the general solution for 
the phase factor, F,(x), spans an infinite family of curves 
joined by the vertical cut-lines at x = +I. To select a physical 
solution we impose a following condition; the x = 0 point has 
to be equivalent to the x + + 00 asymptotics and it must bc 
included in the stable region (zero impedance). This narrows 
down the allowed solutions to the one highlighted in Figure 1. 
A whole frequency spectrum is contained in the stable region 
(upper half-plane) with the resonant points, x = kl, touching 
the stability curve. 
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Figure 1 Microwave stability at transition, illustrated by a 
family of curves representing the phase factor, 
F,(o), in units of 7c, plotted versus x = w/w,. 

IV. CONCLUSIONS 

We have shown that right at transition, the dispersion in- 
tegral includes only the Landau damping term making a beam 
stable against the microwave instability. No instability devel- 
ops, therefore the longitudinal emittance is not increased by 
the microwave instability. 

V. APPENDIX 

The contour C contains the real axis, an infinite semi-circle 
closed in the upper half-plane and a detour piccc enclosing any 
singularity in the lower half-plant. Contributions along the 
first two pieces of the contour are given by the principle value 
integral, while the integral along the detour piece is equal lo 
the residuum of the integrant at the singularity. Both contribu- 
tions are summarized below 

where 

D(e) = W(k) + 2xie5 e -c2 (24) 

W(t>=P 
j 

2 
-a& 

dE (“E _ 5, cm 

and 8 5 is defined as follows 

1 0 if Im(5> > 0 
et = + if Im(Q = 0 (26) 

1 if Im(c) < 0 

Substituting a sequence of above equations into Eq.(22) one 
gets the following expression 

I= d- 
E ~(&lE) + W(-&Z) + 2ni (05 + 8-c)e-an2].(27) 

One can easily check from the definitions, Eqs.(25) and (26), 
that W(s) is an odd function of 5 and the following simple 
identity for 05 holds 

Here we evaluate the dispersion integral at transition, which is 
introduced as follows 

e-c= 1 -et (A28) 

Applying these identities to Eq.(27) reduces it to the following 

I= dyE+$$) 
c! 

final expression 
(20) I = 2ni v(E). (29) 

where w(Z,t) is a Gaussian parametrized by 
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