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Abstract motion is then 

Cumulative beam breakup in linear accelerators has been 
studied extensively for the case of infinitely short bunches. While 
this model is appropriate for high energy accelerators, in high-current 
ion accelerators the bunch length can occupy a significant fraction of 
an rf period of the deflecting mode. A semi-analytic model has been 
developed to study and predict beam breakup in the case of nonzero 
bunch length and arbitrary bunch shape. Simulations of steady-state 
bunch distortion are prcscntcd, and the role of focusing in controlling 
beam breakup with bunches of nonzero length is illustrated. 

As also indicated in Ref. 3, after Fourier transformation cq. (1) 
becomes 

I. INTRODUCTION 

A deflecting mode which induces cumulative beam breakup 
(BBU) can cause degradation of beam quality and possible beam loss 
to the cavity walls. In low-p accelerators, the bunches have nonzero 
length and can occupy a significant fraction of the rf period of the 
deflecting mode. In turn, they will drive wakefields which differ 
from those set up by the nearly delta-function bunches characteristic 
of high-p accelerators. The wakefields will also be affected by the 
distribution of current within each bunch. Therefore, the effects of 
cumulative BBU in low-p ion accelerators will generally be 
quantitatively different than in high- /3 electron accelerators. 
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Equation (3) is a difference-differential equation for the Fourier 
transform of the displacement of periodic bunches of arbitrary shape. 
If the problem is completely periodic, i.e. steady state has been 
reached and the misalignment at the entrance to the linac has the 
same period as the bunches, then the displacement can be expanded 
in a Fourier series:, 

This problem is of particular interest in connection with 
superconducting linacs for high-current ion beams.’ In these linacs, 
the constituent cavities will be short and independently phased, and 
cumulative BBU is therefore expected to be the dominant transverse 
instability. Because superconducting linacs run cw, the steady-state 
propertics of their beams are fundamentally important. Steady-state 
BBU predominates after times long compared to Q/o , where Q and w 
refer to the deflecting mode and represent the cavity quality factor 
and the angular frequency of this mode, respectively. The transient 
BBU which occurs earlier can be countered by slowly increasing the 
current during turn-on,2 and the steady-state case is therefore of most 
interest in connection with linacs which run cw. 

In that case eq. (3) is replaced by 

where 

Grn = / id< w(i’) eemgi = 

In this paper, we calculate cumulative BBU in a linac with 

smoothly varying parameters and arbitrary p. In particular, we 
calculate the effects of nonzero bunch length and arbitrary current 
distribution within each bunch on the steady-state BBU of a coasting 
beam. In choosing a coasting beam to model the problem, we are 
ignoring the effects of longitudinal synchrotron oscillations within 
each bunch which occur in the presence of acceleration. 

The BBU problem reduces to the calculation of the eigenvalues of the 
linear system associated with eq. (5). 

Equation (5) can also be solved via series expansion of the 
Fourier components of the transverse displacement: 

II. EQUATION OF TRANSVERSE MOTION WITH PERIODIC 
CURRENT 

The following recurrence relation is obtained: 

We investigate cumulative beam breakup for the case of a 
periodic current composed of an infinite series of bunches of identical 
but arbitrary shape. The assumptions and notation of Ref. 3 are 
used. We will assume that py , K, and e are all independent ofo 
(coasting beam). As given in Ref. 3, the equation of transverse 

For the case of a misaligned beam with initial conditions 

WV3 = x0 , x/(0,()= 0, the first terms of the expansion are 
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~~,~=e~,,F,,x,-~x, x,,=ert,F,x, (9) 

and the beam displacement over the interval 0 s ( s o T is given by 

1 ( 
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The displacement of the center of the bunch (C =0) is 

x(0,0) = 5 x,(u) - x0 1 
[ 
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f2' = e c SmFm = elw(C)F(-<)dC. 
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It is useful to define a “growth factor” G(u,<;K) as follows: 

@(u,~;K) E .--!.- A. cf%u 0 
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The growth factor of the bunch centroid at the entrance of the linac 
is 

G2(O @ ) = L”(‘,‘) ’ 9 ,K 
q, do2 

= ;(rP - K2). (14) 

The role of focusing is clear: ~>n generates an imaginary growth 
factor at the linac entrance which tends to stabilize the beam with 
respect to beam breakup. 

III. EXAMPLE: UNIFORM BUNCHES 

In the case where each bunch has the uniform current 
distribution 

or/a fur ICl<d2, 
F(C) = 

for a/2<ICl<or/2, 

the growth factor at the linac entrance with zero focusing is 

G2(0,0;~=0) = oi-- 4Q2 
a 4Q2+1 

(15) 
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where p and q are the resonance functions defined in Ref. 3. In 

Fig. 1, G2(0,0;~=0) is plotted as a function of “filling factor” 
fsa/o r for various values of o T. The figure shows that the bunch 
length is an important factor in determining the stability of the beam 
with respect to BBU. This observation is accentuated by the plots in 
Fig. 2. There, the growth factor is plotted for various values of 
filling factor in the vicinity of the resonance o 5 = 4n (1+1/2Q) for 

Q= 1000. As the bunch length increases, the stability of the beam 
with respect to BBU qualitatively reverses. 
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Fig. 1. Growth factor G’(O,O;K = 0) vs. filling factor f= a/o r for 
Q = 1000 and for assorted values of o r f= 0 corresponds to delta- 
function bunches, and f= 1 corresponds lo the dc beam. 
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Fig. 2. Growth factor G’(O,O;K=O) vs. o 5 in the vicinity of the 
resonance 01 = 4n(l+ 1/2Q) for Q=lOOO and for assorted values 

of filling factor f= a/w 5 

In the case of finite but short bunches, we find 

Thus, WC find that a slight spread of the charge distribution within 
bunches exacerbates beam breakup, independently of the focusing 
strength K. This is also true for arbitrary current distributions. 
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According to eqs. (12) and (14). 

AG2 =G’(a*O)-G’(a=O) = 5 GJa (F, - 1). 
m--r 

(18) 

For nearly delta-function bunches, the terms with large m 
predominate. From eq. (6), the corresponding Gmt,s are real and 
negative, so that 

w 
AC2 - 2x a,[Re(FJ -11. (19) 
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We now see that AG’>O because Re(Fn) gradually decreases from 
unity as m increases. Accordingly, slightly spreading the bunches 
always exacerbates beam breakup. This conclusion is valid only for 
small deviations from the delta-function case, i.e. for aao~ and 
at2n. In the limit a -0 5, we recover the dc case from eq. (16). 

Even when the beam is inherently stable, the deflecting modes 
can distort each bunch and thereby degrade beam quality. An 
example is presented in Fig. 3a for an unfocused beam with 
parameters which are plausible for a superconducting linac.4 These 
results, which were generated numerically from eq. (S), reveal that 
portions of the bunch can be deflected to transverse displacements 
exceeding the initial displacement even though the bunch centroids 
are deflected toward the axis. However, as shown in Fig. 3b, 
focusing can be used to suppress bunch distortion. 

IV. CONCLUSIONS 

A formalism which enables the calculation of steady-state 
cumulative beam breakup with bunches of arbitrary shape and 
nonzcro length comprising a coasting beam was developed. As an 
example, the formalism was applied to uniform bunches. Bunches 
of short, but nonzero, length always exacerbate BBU relative to 
delta-function bunches. Bunches of finite length may be severely 
distorted by the deflecting modes, even in circumstances which 
would be stable were the bunches to have zero length. In each case, 
however, focusing can be used as a cure. 

V. ACKNOWLEDGEMENTS 

This research was sponsored by the U.S. Department of Energy 
under contract W-31-109-ENG-38 and by the U.S. Army Strategic 
Defense Command. 

VI. REFERENCES 

[l] J.R. Delayen, C.L. Bohn, W.L. Kennedy, C.T. Roche, and 
L. Sagalovsky, “Recent Developments in High-Current 
Superconducting Ion Linacs”, these Proceedings. 

[2] R.L. Gluckstern, F. Neri, and R.K. Cooper, “Cumulative 
Beam Breakup with Smoothly Varying Parameters”, Purr. 
Accel., 23, pp. 53-71, 1988. 

[3] J.R. Delayen and C.L. Bohn, “Beam Breakup with 
Longitudinal Halo”, these Proceedings. 

[4] J.R. Delayen, C.L. Bohn, and C.T. Roche,’ “Application of rf 
Superconductivity to High-Brightness Ion Beam Accelerators”, 
Proc. 1990 Linear Accelerator Conference, LA-12004-C, pp. 
82-84, 1990. 

2 

I 

2. 
x0 

0 

-. 

-I 
0 1.2 

o- 

2 

I 

X 
x, 

0 

-I 

(1 3,) 

.__ 

C. 

- __ 

I! 
\./ 

r\ 
/l 1 

0 
u 

1.2 

Fig. 3. Plots of bunch displacement and shape vs. position u along 

the linac for o 5 = 12, e = 0.2, Q = 106, f=0.25, and for (a)K = 0 
(no focusing) and (b) K = 10. Transversedisplacement, plotted as the 
ordinate, is normalized with respect to the initial displacement. 
u = 0 denotes the entrance to the linac, and u = 1 denotes the exit. 
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