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ABSTRACT 

A method of decreasing the beam emittance is con- 

sidered using intrabeam Coulomb scattering of particles 

during the processes of beam formation and acceleration. 

The necessary conditions for efficient heat transfer from 

transverse degrees of freedom into longitudinal ones are 

formulated, and the principal limit,ations on the rate of 

cooling and achievable temperature are established. An 

example of the self-cooling is given for the case of a beam 

formed and accelerated in the space charge regime and 

in the presence of external accompanying magnetic field. 

INTRODUCTION 

Cooling of charged particle beams is one of the im- 

portant topics of modern accelerat,or physics. Four meth- 

ods are known and are either used today or have good 

prospects to be applied for the cooling of circulating 

beams: 

1. 

2. 

3. 

4. 

radiation damping of ultrarelativistic particles in 

synchrotrons; 

electron cooling which is based on the use of a 

co-moving electron beam, straight or circulating, 

as in a thermostat; 

stochastic cooling baaed on 

systems; 

laser cooling of ion beams. 

the use of RF feedback 

Among these methods, only the electron cooling is 

capable of cooling a straight low-energetic proton or ion 

beam within an acceptable length of cooling section; it is 

effective due to a very low value of the longitudinal elec- 

tron temperature (Ti - 10v4 eV) and the transverse 

motion of electrons being bounded because of the mag- 

netic field. Rowever, in view of the longitudinal heating 

of electrons by the ions of the beam under cooling, the 

ratio between the electron’s and the ion’s current densi- 

ties must be not less than Ti/TE. Therefore, the use of 

elcct,ron cooling for the ion beams with current densit,y 

above - 1 mA/cm2 seems t’o be problematic. 

In this report, we focus on the possibility of using 

intrabeam scattering of particles for the transverse cool- 

ing of a beam, with corresponding heating in the longi- 

tudinal direction; in this process, there are no external 

heat energy transfers from the beam. In such a situa- 

tion, the total beam entropy is not decreased, but there 

is redistribution between the degrees of freedom of the 

beam. The decreasing of the t,ransverse entropy then oc- 

curs under the condition Tl > Tll; this condition can be 

maintained for a long time by longitudinally stretching 

the beam during acceleration and by transversely com- 

pressing the beam. The increase of the total entropy 

is small when these processes are performed slow with 

respect to the process of temperature relaxation. Note 

that the adiabatic process should start from a state of 

Tl = Tll, in order to avoid a substantial increase of 

the entropy during the initial stage of the transverse cool- 

ing. Also, if we cannot exclutie some intermediate states 

of the beam when TI is not close to Tll, these states 

should be passed as fast as possible in order to minimize 

the resulting transverse phase space volume of the beam. 

SELF COOLING IN THE ADIABATIC LIMIT 

We describe evolution of the beam by the variables 

rl = ?‘I . T a’, I?11 = d-- 
TII . y, 

where 

T = < W’.d2 > < (AP 1” > 
I 2m ’ TII = 72; ’ 

a is the beam radius, v is the average longitudinal ve- 

locit,y, y = l/( 1 - $)‘i2, e is the particle charge, and 

I is the beam current. The variables rl and rll are 

the dynamical invariants of the beam as an ensemble of 

particles; they can be considered as the transverse and 

longitudinal phase space volume of an element of beam 

length, respectively. The product I’ = rl . rll is 

the corresponding &dimensional phase space volume of 

the element of beam length. Near the equilibrium state 

Tl = Tll = T we have 
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rl = 7ra2T, 
T3/2 

rll = y e J5;, r = 77, 

where n is the particle concentration. During the adi- 

abatic process, the parameters v, a, and I may change, 

but the volume I’ remains unchanged and we get the re- 

lation between values of I’1 at the end to that at the 

beginning of the adiabatic process as: 

- = [(‘“),(‘“),]“” rl 
rlo 

(1) 

The maximum cooliJgv effezt’ occurs when all the 

process of beam formation and acceleration is performed 

adiabatically. In this case, the value v. is related to the 

cathode temperature, T,, (T, = mvi) and a0 is the beam 

size at the cathode, +. Table 1 gives an illustration of 

the maximum cooling effect for a heavy particle beam 

assuming no beam bunching after acceleration. 

L 

Table 1 

Maximum Cooling Effect 

Initial beam parameters 

Cathode temperature, eV 

Beam radius at the cathode, cm 

Parameters after acceleratiol. 

Top energy after acceleration, MeV 

Beam radius after acceleration, cm 

Self-cooling effect 

0.1 

0.5 

100 

0.0: 

Decreasing of beam emittance, times 

Decreasing of transverse phase space 
volume, times 

100 

104 

The adiabatic relation (Equation 1) and the conser- 

vation of r are valid under the condition 

A,’ E 2 (E)’ . $ << A,’ 

where ’ denotes change with respect to the longitudinal 

direction and X2’ is the collision relaxation parameter 

defined from 

In addition, we should note the following conditions 

for the beam dynamics in focusing and accelerating: 

1. A solenoidal magnetic field can be used in order to 

keep an intensive low energy beam from repulsion 

by the space charge effect,. 

(TI - Tll):t = -&t’(%. - T/h (3) 2. The current distribution at the cathode and the 

Near the equilibrium state TI = Tll, t,he parameter h,’ accelerating electric field should have axial sym- 

is equal to metry. 

A$ = “ii = g. 8J?;ne4L 8fiLe4 1 
5J;;;T3j2 . y2v = ge ’ f;’ (4) 

where g is a numerical factor with an order of value of 

about 1, and L is the Coulomb parameter 

L = I-1,1( YT3 
----+ 2 4xne6 (5) 

with an order of value of about 3-5. 

We can see from formula (4) that it is very impor- 

tant to have as small a value of r as possible in order 

to get a maximum rate of temperature relaxation and 

satisfy the adiabatic condition (2). 

SELF-COOLING OF AN ACTUAL BEAM 

When accelerating an actual beam, the adiabatic 

condition cannot be satisfied in the region near the cath- 

ode, because the characteristic time of acceleratSion there 

is about equal to the inverse plasma paramet#er: 

wP -I= diqzz, 
which is small in comparison to the temperature relax- 

ation time &/v. With the acceleration, the longitudi- 

nal temperature goes down very fast, and one must take 

into account intra-beam scatt,ering which can limit its 

decrease, i.e. the longitudinal entropy will increase with 

collisions between particles (see the Appendix). After a 

distance of about a, from the cathode, we can equalize 

the transverse and longitudinal temperatures by having 

the transverse expansion of the beam and, if necessary, 

by deacceleration of the beam. In this state, we obtain an 

intermediate energy WO such that T, << Wc << MT,,,,,? 

with initial (maximum) radius a0 and initial value of re- 

laxation parameter X2’. With these parameters, we can 

start the adiabatic cooling process (1). In view of the 

presence of the non-adiabatic stage at the beginning of 

the beam evolution, the self-cooling effect will be less 

than potentially possible as was presented in Table 1 

(see Table 2). 
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3. Electric and magnetic fields have to be matched in 

the region of the beam injection into the solenoid, 

in order to avoid radial beam excitation inside the 

solenoid, i.e., to reach the Brilluen’s beam state. 

Table 2 

Self-cooling of an Actual Beam 

Beam current I, A 1 

Beam radius at cathode ate, cm 0.5 

Cathode temperature T,, eV 0.1 

Anode vohage VA, kV 10 

Longitudinal length of expansion section G 
cm 

Beam radius after expansion ao, cm 3 

Initial energy of the adiabatic process WO, 10 
keV 

Initial relaxation lengt,h X0, m 0.3 

Final energy Wf, MeV 100 

MaYvimum value of solenoidal field Bf, 10 
Tesla 

Final beam radius in the solenoid af, cm 0.02 

Final relaxation length Xf, m 15 

Cooling effect on beam emittance, times 25 

Cooling effect on beam brightness, times 600 

APPENDIX 

To describe the evolution of a beam, we use the 

equations as follows: 

CL = na2(TLL)str ‘{I = Tve(TIl)&Ifi (Al) 

where (T’,),t , (T;I)st are the rates of temperature change 

under intrabeam collisions. With the definition (3) and 

taking into account heat energy conservation for colli- 

sions. we obtain: 

(T+ = -2(T’,),, = 2X,‘(Tl - T,,)/3 (A21 

From (‘41) and (A2), we get immediately: 

r’ = r’J’,, + rJ’;, = X,’ . (TI - T,,)21’/3TIT,, (A3) 

It, is not difficult to calculate A,t’ in the cases of Tl >> 

TII and TI << TII, using the Landau integral [l]: 

G= g-ya2. (&q > ,;;-;; 

where L (TII), L(Tl) are functions like (5) with effec- 

tive temperatures TII and TI, respectively. In order to 

calculate the numerical factor in (4) in the case when 

Tl. M TII, we use the model with Gaussian distribution 

in temperatures Tl and TII; then we get g = 1. 

We can calculate the increase of I? in the quasiadia- 

batic case. Taking into account that Ad >> Xst, we find 

from the equations (Al) and (A2) that 

AT s TI - TII M TX,,/&; 

then, after substituting AT in (A3), we get: 

r' x (Aeq/3A:)r 

Solving this equation, one can establish the bound- 

aries of stability of the quasiadiabatic process and calcu- 

late non-adiabatic effects. 

The relaxation equations (Al) and (A2) can be used 

also to calculate collision effects when one of two tem- 

peratures, TII or Tl, becomes small in relation to the 

other due to fast non-adiababic space expansion of the 

beam. We consider two cases as follows: 

1. TII c-c TI; this case corresponds to non- 

adiabatic acceleration of a beam from the cathode. 

Then, we have from equat,ions (Al): 

We can integrate this equation from the cathode surface 

to the state Tll = Tl = To to logarithmic accuracy 

ta,king into account, that Tla2 = const. 

2. Tl << TII; we get this situation when the beam 

is expanded fast transversely after the adiabatic accel- 

eration t,o maximum energy. Then I’l increases with 

collisions as: 

l?l = 2fiIe3[L2(Tf) - L2(T1)]/vf2& , 

with TI = rl/aa2. 
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