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Abstract 

This paper describes a technique for making multi- 
particle computer simulations of coherent instability con- 
sistent with conventional bunched-beam longitudinal in- 
stability theory. The argument behind the technique ex- 
poses an oversight of instability theory: the response of 
the phase-space distribution to the non-linear steady state 
wakefields is neglected. As an example, the technique is 
applied to a beam with the steady-state space-charge 
fields artificially cancelled. The computer simulations pre- 
sented are seen to agree with mode-coupling theory. Beam 
and machine parameters are taken from the proposed 
TRIUMF-KAON [l] A ccumulator, which is a high current 
prot,on storage ring. 

I. CRITIQUE OF STABILITY ANALYSIS 

The stability analysis of a particle beam is a two step pro- 
cess: (i) determine the steady state conditions; and (ii) 
discover the behaviour of small perturbat,ions. 

A. Steady State 

The single particle equation of motion is: 

2 + wfz = F(z) = w;< c Zp(0)h,e~~” (1) 

‘l‘he wakefield F is the product of the complex impedance 

Z,(D) = Z(phwo) evaluat,ed at frequencies phwo and the 
steady state beam Fourier components A,. Here wg is the 
revolution frequency. The wakefield 1” comprises a linear 
part, L(X) and a non-linear part N(z). The linear term is 
removed by renormalizing the incoherent frequency. Then 

(1) b ecomes: 
ii + (W&);L = N(x) (2) 

Here (w’,“,..) is the ensemble average incoherent frequency. 
The behnviour of the steady state ensemble with phase- 

space distribution function *(~,0) is governed by the 
Vlasov equ;ltion. This is written in polar coordinates: 

c/ (i-~&) f$q - N(s) 
[ 
sin 0$ + T$ 

I 
9 = 0 (3) 

If N s 0 then Q has no angular dependence and so 
9 = q(r). We can turn the argument around, and say that 
if the steady state distribution is a function only of radius, 
t,hen the non-linear part of the wakefield must have been 
exactly cancelled by an ext,ernally applied counter-field. 
This is the assumption made in analytical instability the- 
ory. Physically, the cariccllation is vc’ry difficult to achieve; 
hut it, is t,rivial t,o implement in a computer simulation. 

B. Small Perturbations 

We write the time dependent part of the phase-space 
ensemble as E$(T, B)ejwl; and this generates a wakefield 

~f(t, cc) = c eiWt C Z,(w) A, eipx 
P 

where X, are the harmonics of the perturbation I~und- 

shape and Z,(w) = Z(phwo + ) w is the impedance at t,lic 
perturbation frequency iu. The Vlasov equation becomes: 

[ 
i - (“inc) ;] [e + &ejwt] + 

cf(x,t) 
[ 

d cos Q i) 
sin@-- + 

(Win,) a7 
7% 1 [\TI + Ell’P] = 0 (5) 

(5) is linearized in E, and the steady state equation (3) is 
subtracted giving: 

[ 
.iw - (uinc) g 4 + - 1 f(z) sin f?gq(r) = 0 

(%lc) (3r 
[6} 

C. Consistency Technique 

Inst,ability theory seeks solutions of (6). A Inlllt,i-l;alticle 
simulation code is easily made to emulate equation (5), and 
this is a close relative of equat)ion (6). We simply subt,ract, 
an analytic expression for the steady state wakefield fro111 
the wakefield calculated from the hlonte Carlo enselnble. 
When this is done, we should expect agreement, on t.11~ 
threshold beam current for coherent instability; becnus~e 
the simulation has been made as unrealistic as the analytic 
instability theory. 

D. Real Beam 

Of course, t,he real beam will respond t,o the steady state 
wakefield. When the non-linear fields are s~lbsta~~t.ial, t.hvn 

complicated mismatching effect&s will occur; and t,hough 
they may mimic an instability these arc, irl fact, trnnsienl 
response behaviours. In this light, it is no surprise that 
the calculations and simulation for a space-charge tlomi- 
nated hollow beam reported in reference [2] differ in thei 
conclusions. 

II. MODE COUPLING R.FNJI,TS 

An instability analysis for a bunched beam which is Itollo~ 
in longitudinal phase-space and for which the internal self- 
forces derive solely from t,he space-charge force has bc:en 
carried out by Baartman [2]. hl d - 0 e coupling theory shows 
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there to be a dipole instability when the zero amplitude 
incoherent frequency w(O) becomes fi times the zero in- 
tensity synchrotron frequency wS, as in figure 3. 

A further prediction of reference [2] is that there is 
no qusdrupolar instability until the threshold frequency 
w(0) rz 1.581~~; also as in figure 3. 

III. SIMULATION MODEL 

The computer experiment,s were made with the code 
LOYGlD [3]. Th e r f- cavities produce a linear restoring 
force. There are 4 cavity crossings per turn, and space- 
charge is implemented by a second order symplectic map- 
ping with 4 sub-steps between each cavity. The beam 
bunch is modelled by an ensemble of 6 x lo4 macro- 
particles. A random number generator was used to prepare 
an approximation to the hollow gaussian distribution: 

Q(r) = (r2/4~c4) exp(-r2/2a2) . (7) 

The parameter g is measured in radians of rf-phase, and 
t& spacing between bunches is ‘2~. The finite number of 
simulation particles implies a statistical jitter in the bunch 
shape, and this is responsible for seeding any unstable be- 
haviour that may occur. 

A Cancellation of Steady State Wake 

‘I’hc st,eady state Fourier components are: 

2x,$ = [l - p2a2/2] exp(-r2a2/2) (8) 

and t.hese are subtracted from the components found by 
binning the statistical ensemble and Fourier analysing. The 
remainder gives the residual X,. 

The linear part of the wakefield is restored by substitut- 
ing the ensemble average incoherent tune in place of the 
zero intensity synchrotron tune. 

(wl”“J = w; [l - C/16a3J;;] (9) 

‘I’hc bunch length parameter u has to be a.djusted to ac- 
count for the bunch lengthening consistent with (w,,,,). 
Let 9, y be relativistic kinematic parameters; Z0 the 
impedance of free space; crf the peak accelerating voltage; 
(I) the dc component of circulating current in Amps; h the 
harmonic number; and go = 1 + 2 ln(b/a). The const,ant C 
is given by 

c = ($) (;:;y$,) . (10) 

Equations (7-l 1) are taken from reference [4]. 

IV. ENSEMBIX CHARACTERISTICS 

The bchaviour of the beam coherent motion was monitored 
t)J, extracting 2 orthogonal measures of the dipole mo~ncnt~, 
(~~cos8) and (rsin 0); and 2 measures of the quadrupole 
rnonlent, (7.’ cos(20)) and ( T’ sin(20)). The quadrature sum 
of 2 measures will give the net amplitude of the dipolar 
or quadrupolar disturbance. The Fourier transform with 
respect to time of an individual measure will show the 
frequencies of the many coherent radial modes which con- 
tribute to each polar disturbance. 

A. Ellipse Rotation and Scaling 

When longitudinal motion is modelled by difference 
equations (rather than a differential equation) the matched 
phase-space circle becomes a tilted ellipse. Whereas the 
polar moments of a uniformly filled circle are zero, those 
of an ellipse are finite. Consequently, the ensemble coor- 
dinates have to be multiplied by the inverse longitudinal 
Twiss parameter matrix before the multipole moments are 
extracted. This procedure is described in reference [5]. 

V. TRIAL CASES AND RESULTS 

Following Baartman, the trial cases are ordered as a func- 
tion of the zero amplitude incoherent frequency 

w2(0) = w,” [1+ c/2C73&] . (11) 

Trial cases for a space-charge compensated beam are sum- 
marized in Table 1. The entries in the last coluinn indi- 
cate if the simulation behaved as below (lJ>, or at dipo1a.r 
threshold (+), or above (fi). Th e b eam current is given in 
Amps 

Tab 
CiSe 

A 
B 
C 
D 
E 
F 
G 
H 
I 

1: Tria. 
Current 
0.00 
1.5867 
4.4008 
2.2004 
3.6673 
4.0341 
4.4008 
5.1343 
7.3347 

ases for beam with hollow Dhase-: ace. 
cl 

0.500 
1.00256 
1.00708 
0.51459 
0.52407 
0.52641 
0.52874 
0.53336 
0.54695 

n/a 

u 

i 

1 
u 
;=t 

fi 

-3 

A. Dipolar Instability 

Figure 1 shows the dipolar amplitude versus t,ime for 3 
cases (G, El, I) b a ove threshold and one case (E) below 
threshold. The threshold frequency shift w(O) E 1.4327w,, 
inferred from case F, is in excellent agreement with the 
value predicted by Baartman, w(0) x 1.4142~~. 
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Fig.1 Space-charge compensated hollow beams 

Well above threshold, as in cases II and I, the effect of 
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the instability is to transform the initial two-humped line 
density into a single-humped gaussian distribution. 

B. Quadrupolar Instability 

There should be no growth in the quadrupolar ampli- 
tude for cases A through H. However, for trial case I the 
zero amplitude frequency is w(O) = 1.645 w,; well above 
threshold and quadrupolar growth is expected. Figure 2 
shows the quadrupolar amplitude versus time for cases E, 
G, II and I; confirming the predictions for the quadrupolar 
instability threshold. 

Cases E,G.H below threshold 

Case I above threshold 
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Fig 2 Space-charge compensated hollow beams 

C. Frequency Spectra 

The theoretical frequency spectrum of coherent oscilla- 
tion modes is given in figure 3: which is adapted from refer- 
ence [a]. The precise values and number of modes depends 
on the size of the matrix used to find the eigen-frequencies. 
Each polar disturbance is split into several radial modes. 

It is anticipated that, the fast Fourier transform (FFT) 
of the simulation polar components should show a sim- 
ilar pattern of frequencies. This is verified in the exam- 
ple figures 4a and 4b. The ordinate wO/u is the inverse of 
the synchrot,ron tune. The small amplitude zero-intensity 
tune is w,/q = .04883. The annot,at,ions give the oscilla- 
t,ion frequency divided by the ensemble average incoherent, 
syI!chrot ran frequency. The amplitude of a particular fre- 
qllency component derives from statistics of the ensemble 
a11d how well the polar measures discriminate a particular 
radial n~ode. Consequently, not all radial mode frequencies 
rleed be present in the FFT. 

VI. CONCLUSION 

Bunched beam instability theory applies only to a beam 
in which the non-linear steady stat,? wakefields have been 
artificially cancelled. Consistency between simulation and 
calculation demands that a similar, albeit non-physical, 
compensation of steady state wakes is incorporated into 
rrlulti-particle codes. When t.his is done, the agreement be- 
twecn the simulations of a space-charge compensated beam 
presented here, and the analysis of Raartman leads to a 
high level of confidence in the computer model. 
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