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Abstract 

A simple analytical expression for the longitudinal 
coupling impedance of a toroidal beam tube below the 
resonance region has been derived by expanding the 
electromagnetic fields of the toroidal beam tube in a 
power series in curvature and substituting directly into 
Maxwell’s equations. The resulting expression consists of 
the impedance of the straight beam pipe plus a correction 
terms due to the curvature. It has been verified that 
this result gives excellent agreement to the exact solution 
below the first resonance. 

INTRODUCTION 

with &,, = mr/h; m = odd. To achieve notational 
simplicity, the index m and the common exponential 
factor will be suppressed in the sequel. 

The longitudinal coupling impedance of a toroidal 
beam tube with rectangular cross section was addressed 
by a nuruber of recent publications.[l] An exact treatment 
of this problem with many references to earlier work can 
be found in the paper by Warnock and Morton.[2] 

The field components in each subregion have the 
general form 

.4n approximate expression for the coupling impedance 
below the resonance region, but valid beyond cut off, was 
derived by Ng and Warnock using the Debye’s asymptotic 
expansions of relevant Bessel functions.[3] In the present 
paper, a simple analytical expression for the curvature 
term of the sub-resonant coupling impedance is derived 
by expanding the electromagnetic fields in a power series 
in curvature of the toroidal beam tube and substituting 
directly into Maxwell’s equations. 

E= (zOzi)andH= (zQi!g) 

The field in each subregion is given by the sum of E and 
H modes with 2 expansion coefficients (per index m). The 
four coefficients are determined by requiring continuity 
of Ee, E,, He and application of Ampere’s law to Hz 
at the vertical current sheet. The longitudinal coupling 
impedance is defined by 

The perturbation treatment of electromagnetic prob- 
lems is well-known due to the work by Jouguet[4] and 
Lewin[5] and its application to the present problem con- 
veys considerable physical insight without loss of accu- 
racy. In fact, it has been computationally verified that 
the results presented here are in better agreement with 
the exact solution than the Ng-Warnock approximation, 
although the differences are inconsequential. 
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FORMAL SOLUTION 

A convenient method of obtaining an expression 
for the longitudinal coupling impedance presented by a 
smooth beam tube with rectangular cross section (Fig. 1) 
to a filanletrtary current involves field matching along a 
vertical plane common to the inner and outer subregion. 
In the cast of a curved tube, the fields must be expanded 
in terms of I1 and E modes. In a straight tube, a pure 

TM mode would be adequate. A formal solution, valid 
for both cases, is obtained by always using H/LSE and 
E/LSH modes. 

The centered filamentary current Ie-jn*ejwt (mode 
number R, frequency w = vn/R) is represented by a 
current sheet in the vertical plane, 

i = ye-jneejwt x cos trnt 
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* Work performed under the auspices of the U.S. Depart- Fig. 1: Toroidal Beam Tube Geometry. 
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Table I: Field Components in Beam Tube with Rectangular Cross Section. 

H(LSE) mode E(LSH) mode 
toroidal straight toroidal straight 

with the formal solution in natural units (c = pL, = 1) 

8, = vR2$C(w) vC12 cash X (z If: w) -jS’(KT) 

fe = -ws1y (Kr) --~a+ sinh X (x f w) n$s (Kr) 

& = 0 0 (1 - vQ2) s (K?-) 

n, = FC’ (Kr) 3 sinh X (z f w) -vs12y(Kr) 

ne = -arc -RcoshX(zfw) vn~s’(Kr) 
7-1, = (1- v2!-P) C(nr) (1 - v2R2) coshX(z f w) 0 

-- f cod1 x (z ItI w) 

nsinhX(z&w) 
(1 - v2R2) sinh X (x IfI w) 

-v@ sinh X (z & w) 

v+oshX(ri-w) 

0 

where 

and the field components & and 7i for inner (index i) and 
outer (index o) subregion to be evaluated at 3: = 0. The 
present solution equals in substance the Warnock-Morton 
result, however the different formulation is essential to the 
subsequent treatment of the problem. Note also, that the 
distinction between Z(n) and Z (n,W) can be ignored in 
the subresonant region, which is addressed in this paper. 

The expressions for the field components of E and 
II modes are given in Table I. In the toroidal case the 
functions C (or) and S(KET) are linear combinations of 
modified Bessel functions with their definition given in 
Table II and 

K =.(&z-z?. 

In the straight case 

The coupling impedance of the straight beam tube, 
the space charge term, follows as (Zc = cpc = 1) 

Z 
---= 
n 

tgh <I+/‘- 

rrldiq=Fp 

which vanishes for v - 1 

PERTURBATION TREATMENT 

The residual curvature term for ‘c’ - 1 could be 
obtained from the above formal solution by using asyrup- 
totic expansions for the Bessel functions similar to the 
Ng-Warnock treatment.[3] ! t n asymptotic expansion is 
here obtained directly from Maxwell’s equations by ex- 
panding the field components according to 

E=E(zc)+e(2)/R 

n = II(x)+~(z)/R 

with the zeroorder solut,ion given by the straight tube. 
The resulting set of differential equations is given in Table 
III. IIigher-order solutions are obtained by iteration. 

x=&/m Using the symbolic manipulation program MAC- 
SYMA, asymptotic expressions for the field components 

with the relativistic 7 -’ = 1-v2. Note that the boundary were determined to second order in w/R for the case of 
at conditions fi and R,, respectively t = fw, are fully v - 1. The results for Ci (nR) and Si (KR) are given as 

satisfied. example in Table II. 

Table II: Definition and Asymptotic Expansion of Toroidal Functions. 

G,o (Kr) = KJq{Icn (Kr) IA (KRi,o) - In (Kr) Ii; (K&,0)} 

Ci (KR) - cosh[w+ 

+$ 
{ 

1+;;:,,p2 + g 

si,, (Kr) = qmqi-CL (KT) Ka (KR;,,) - I(, (Kr) In (K&,0)} 

Si (KR) - sinhEw+ 

@ ~f”‘(~-~‘)~’ l-6R2+5Ci' 
2+R 24 32cR 

coshtw + $ q + ‘-,6,::;5”’ 
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Table III: Perturbation Formulation of Maxwell’s Equations. 

$hz - (<2-~2+ $)hz = +v (x&Ee+w~H, +Ee) - L&((ExEe +wxEI,)+ g(<xHg +wxE,) 
a2 ue, - (t” - w2 + $-) e, = -v (x &He - WXE, + He) + i& (EzHe + WZE,) - 2 (CxEe + wxH,) 

hr=+( -Be, i- i&-h, +<xEe +wxH, 
> 

e, = +-- 
( 

ghz - 5 g-e, 

he = yiw{(e, + &e,) 

+ JzHe + WXE, 
> 

eg = -$ (th, - $$hz) 

The perturbation expression for the curvature term 
of the longitudinal coupling impedance of a toroidal beam 
tube with rectangular cross section was found to be 

Z 
- = -jzo $ 
n ( > 

’ C (I- 3-p) i ~c~~2~~w 

This perturbation expression has been numerically 
compared with the exact results obtained by using the 
SLATEC subroutines for the Bessel functions. It was 
confirmed that the total coupling impedance in the rela- 
tivistic case of 2, - 1 is given by the sum of the straight 
beam tube space charge term plus the y-independent 
curvature term.[3] 

In Fig. 2, the total Z/n from above approximations 
is cornpared with the exact results as function of y for 
a geometry with 2u! = h and RR/h = 104. It is noted 
that the modified Bessel functions revert to ordinary 
Bessel functions at R = 11-l - 1, the cut-off frequency 
corresponds to R x fi and the first resonance occurs at 
Q, = 85.8825. Complete agreement at frequencies up to 
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and above cut-off, but below the resonance region, was 
found. 
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Fig. 2: Coupling impedance as function of y. The solid curves are obtained from the 
approximations in this paper and the points from the exact expressions. 
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