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A bslract 
A new adaptive method of closed orbit correction with 

self-modelling feature is developed for third generation 
synchrotron light source with many insertion devices. The 
quasi-Newton method is applied iteratively to minimize 
the closed orbit distortions and to approach the optimal 
control. The information from iterative position mcasure- 
ments is used to update the response matrix adaptively. A 
roughly estimated matrix from optic functions can initial- 
ize t,hc correction scheme. The convcrgcnce rate is at least 
superlinear. Hence, the adaptive method may increase the 
efficiency of fast closed orbit correction. The noise immu- 
nity of this method is also considered. Particularly in the 
case of changing optic functions, this approach provides 
t.hc starching ability of optimal model. 

1 Introduction 

The closed orbit correction is one of the basic daily op- 
erations in the control routines of every accelerator. The 
pcrformacc of the closed orbit control is important for the 
bealn st,abilit,y and the flexibility of machine studies. Since 
the recent progress in the control system supports the on- 
line modelling control[l][2], an optimal self-modelling con- 
trol routine free from the working condition will be the 
intwcsted subject in the future. 

l‘llere are many different, approachs of the closed orbit 
correction[3]. No matter which method of correction is 
used. the basic algorithm is to calculate the new corrector 
settings from the linear response of the machine and the 
meCa.sured orbit distortions. The orbit measurement starts 
this closed loop iteratively, until1 the orbit distortion con- 
verges to a stable minimum. If the machine is linear and 
the model response is exact, the procedure shall terminate 
at the first. iteration. Usually, we need more than one iter- 
ation for the correction. It means that the model response 
is not exact, since the nonlinear effect near the cent,er orbit 
is negligible. If a improper model response is used, the iter- 
ations could even drive the orbit into the nonlinear region 
and cause the run-away of machine working point. Since 
the model response estimated from the theoretical optic 
functions may be different from the actual values in real 
operation, many laborat,orics use the measured response in 
the model function. 

If we find a proper model reponse which leads to the 
convergence of it,erations, the convergence rate and the 

residual decide whether the model is optimal. Particularly 
in the fast feedback system, faster convergence rate and 
smaller residual will improve the efficiency of the system. 
In section 3 of this paper, we will analyze these criteria for 
a general approach. 

In real machine, the response function is a function of 
working point and working condition. It may take a long 
time to find the true response for a certain working point,. 
During the commissioning periode or machine studies, fre- 
quent change of working point inhibits the search of the 
true response. An adaptive self-modelling procedure pro- 
vides the searching ability of optimal model. It should be 
helpful for the commissioning and machine st.udics. 

2 Model Function 

A general model function to be minimized for the closed 
orbit distortions by iteration in the least square sense may 
be written as 

F = (Y 7-iY)P(Y + AA-) + -&X, (1) 

where ii denotes the transpose of the matrix i1 and: 

Y is n-dimensional vect,or and its element 1: is the 
measured closed orbit distortion at station i. 

X is m-dimensional vector and its element Xj is the 
current setting of corrector j. 

A is the model response matrix (n x ~1) between cur- 
rent and distortion. 

P is diagonal matrix of the positive weight factor. 

y is the positive weight connected to the limit of total 
corrector current. 

The 7z x m matrix e1cnient.s of the response rnatrix A 
can be calculated from the optic funct.ions or measured 
from real machine. After the measurements of the closed 
orbit distortions Yck) at kth iteration, the current settings 
X’W’) 1 *y(k) + g(y,y(k) arc determined uniquely by the 
Newton step, 

6X@) = -(liPA + ~z)-‘~Pfl’w (2) 

Z indicates the identity matrix. c‘?X(~) is multiplic~d by 
a selected factor (I to increase the convergence rate and 
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reduce the oscillation or to increase the convergence radius. 
The positive constant y is used to avoid the limiting cut 
of high current settings. It also lets the matrix APA + yl 
to be positive definite. Therefore, the inverse of mat,rix 
involved always exists. The diagonal positive weight factor 
P provides the freedom to select suitable stations for extra 
minimization. 

This Newton step will be repeated iteratively with a 
fixed model response A, until a stable minimum of the orbit 
distortions is reached. In the next section, we formulate 
the criterion of convergence and the criterion of optimal 
orbit control. 

3 Convergence Rate 

Let us assume that the true linear coefficients between 
stations and corrector currents are Tij. Ilere, we neglect 

the nonlinear part. The residual of initial APY(‘) after 
kth iteration of correction may be written as 

ldk) = y(k-1) + aT&k-‘), (3) 

jpy(k) = [I - dPT(APA + yl)-‘]* jPY(O). (4) 

In the case of A = T, a similar transformation can al- 
ways change the symmetric matrix APA to the diagonal 
form. The equation (4) becomes 

.4PY(k) = s, [diag(l - aA;)l] S,‘/PY(O), (5) 

where Xp = X,/(X; + y) and Xc are the semipositive eigen- 
values of the matrix APA. The norm of the residuals con- 
verges linearly to zero for 0 < u < 2/ma~(Xy). If there are 
some X4 = 0, we can lower the size of the matrix, or select 
the most efficient correctors. 

In the case of A # T, we transform the matrix 
L~PT(~~PA+yl)-’ to Jordan form J(Xi) with eigenvalues 

x, 

APY(k) = s, [z - uJ(x;)]” &%iPY(O). (6) 

Note that, only the condition 0 < uXf < 2 will guarantee 
Xck) to converge linearly to the minimizer X’. Since Xi 
are close to unity, cr has to be positive. If there is any 
Xi < 0, no (I exists for the convergence. Such a model 
response matrix A is certainly improper. 

The iterations can always find the rninimizer succesfully 
with a proper model response. Then, the question arises 
here: “Is this result the optimal correction in the A f T 
case?” The answer is “No”. We find only the minimun of 
the model fuction F. For the optimal correction, we should 
replace the mat,rix A by the true linear response T in the 
model function F and then search for the minimun. 

4 Quasi-Newton Method 

The quasi-Newton method is a modification of the New- 
ton mcthod[4]. It is almost the only method in a modern 

approach of unconstrained nonlinear optimization prob- 
lem. We apply this approach on this adaptive method not 
because of the nonlinear feature of the orbit correction but 
for the searching of true response matrix T. Futhermore, 
if we let limk+, Ack) = T, the equation (G) transfers to 
the equation (5) and the eigenvalues Xi approach unity, in 
the case of y = 0, after iterations. The convergence rate is 
increased to be superlinear for (T = 1. That is to say 

= 0. 

Hence, we propose limk+w y --+ 0 and u = 1 iu the quasi- 
Newton approach. The role of g will be replaced by an- 
other constant r in the later development of this adaptive 
method. 

There is an easy way to understand such an application 
on the closed orbit correction. WC adjust only one cor- 
rector current with S/U,. After correction, t,he vector of 
position change SY, divided by SXj becomes one row vet- 
tor of the new response matrix. As a matter of fact, we 
have measured one row vector of matrix. Let the matrix 
M to be the change, 

SYi = (Aij + n4ij)sxj. (8) 

This equation (8) is called quasi-Newton condition (the 
spirit of quasi-Newton method). We say that the feedback 
information from the measurements is used to correct the 
response matrix. If several correctors change current simu- 
taneously, then the problem becomes complicated. There 
are more than one method to update the matrix. However, 
the quasi-Newton condition must be always hold. 

Following, we consider a rank-one mat.rix Mck) = 
u(~)G(~) at kth iteration. It is the direct product of a n- 
dimensional column vector ~(~1 and a m-dimensional row 
vector Gck). From the quasi-Newton condition, we have 

Jk) = 
sy(“) _ A(k)&,y(k) 

~(k)6x(k) 
y@+l) _ y(k) - A(k)(x”+l _ x(k)) 

_. 
,(k)(,yk+’ - ,y@)) ! (9) 

where Ack) = A(k-1)+i24(k-‘) tl is ie updated matrix of Inst. 
iteration. This form takes any vector v of nonzero denom- 
inator. To avoid C(k)6X(k! = 0, the vector u(‘) = 6Xck) is 
chosen. This update is indeed the Broyden’s formula[5] 

This is the most successful update when there are no spe- 
cial feature of matrix A to be rellected[6]. The norm of the 
matrix (T - n(‘)) converges to zero with a rate as fast as 
the rate of convergence of Xck) to the minimizer S*[4]. It 
is known that Xck) converge superlinearly with Droyden’s 
update. The convergence radius with the initial matrix 
A(‘) is, in principle, unlimited. If the T matrix is exact,ly 
linear, there exists only one minimizer. 
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Considering the onset of noise in the measurements, the 
update Illck) may be incorrect. Therefore, we insert a pos- 
itive constant r E (0, 1) to multiply the update and let 

Ack+‘) = A(k) + TM(k). (11) 

This factor plays a role like a digital filter that damps the 
noise. 

In the next quasi-Newton step, 

(5yWl) = 1 -( ~(k+l)pA(k+l))-1~(k+l)py(k+l) 

= -fl(L+‘)li!kt’)py(“+‘), (12) 

it is not necessary to calculate the time-consuming inver- 

sion except for the initial inversion H(“) = (A(‘) 
-1 

. 
We change the quasi-Newton condition of equation (8) for 
the symmetrical inverse matrix Htk+‘) 

with 

6Z(k) = (jp) + iij(k))p6y(k). (14) 

The BFGS formula updates the inverse matrix directly[4], 

bz(k)&Z(k) H(k+‘) = H(k) + ,- _ 

--T- &hJi’(k)Sx(k) ’ (15) 

The BFGS update preserves the symmetric form of matrix. 
TheL;dated matrix remains positive definite, if and only 

if SZ( )&X(k) > 0. It means that the positive sequence 

lead to the positive definite sequence of Hck). The in- 
version of a updated matrix needs O(m3) floating point 
computing operation. The BFGS update consumes only 
O(m’) floating point computing time, It is the most suc- 
cessful way to update a symmetric inverse matrix[6]. 

We don’t use the same formula uniformly to update Ack) 
and M(k), because they have the different features. Dennis 
et al showed that both formula are the best update with 
associated weighting norm in the sense of least change[6]. 
Since we have the freedom to choose the weight P, there 
is no contradiction of unequal treatment,s. 

We summarize the whole procedure from the begining 
as follows 

1. Assume that A(‘),II(‘), Y(‘),X(‘) are the initial val- 
ues. 

2. From the equation (12), find the 6Xck) for new current 
setting X(k+‘). 

3. After correction, measure the new orbit distortions 
Y(ktl) and check its convergence for the termination 
of iterations. 

4. 

5. 

5 

use SYck) = Y(k+l) - Yck) to calculate the update 
Atkf’) with formulae (10) and (11). 

use equation (14) to calculate the update H(kt’) with 
formula (15) and close the loop here to the step 2. 

Concluding Rernark 

The Broyden and BFGS updates have been studied very 
intensively during the seventies and become slowly the 
standard algorithms in the nonlinear programming and op- 
timal control. As far as we know, this paper is the first 
attempt of using this kind of combined algorithms on the 
closed orbit correction towards an intelligent accelerator 
control system. 

Applying the quasi-Newton method, we can find the true 
response matrix. The solution of optimizing the model 
function should be the best correction. Another advantage 
of this method is to avoid the measurement of A matrix, 
which is time-consuming and unacceptable for an electron 
storage ring such as SRRC, if this task has to be executed 
frequently. We start the correction with the response ma- 
trix A(‘) estimated from the optic functions. This adaptive 
method can correct the matrix by itself in the iterations. 
Even if the optic functions are changed, the method ad- 
justs the response matrix automatically. 

The BFGS update keeps the matrix in equation (15) to 
be positive definite. It is not necessary to pay extra care on 
the possible sigularity. The BFGS update reduces the time 
to inverse matrix. The feature of O(m’) operations instead 
of O(m3) operations is benificial and could be essential 
for the use of the adaptive method in the fast feedback 
correction. 
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