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Abstract 

Application of Liouville theorem for the calculation of 
emittance of particle beams through a special electrostatic 
arrangement using the separation of phase space by means 
of a diagonalizable structure of the underlying Hamilto- 
nian. 

I. Introduction 

It is demonstrated, that in a special electrostatic arrange- 
ment the :-dependence (direction of beam) of the Hamilto- 
nian can be neglected. The Hamiltonian separates into two 
parts describing the degrees of freedom of the perpendicu- 
lar motion of the particles. This allows using Liouville’s 
theorem to calculate emittance. A formula is easily derived 
by taking into acount the additive structure of the Hamil- 
tonian (constant partial phase space). A simple method is 
presented for measuring the emittance. 

II. Liouville theorem and the con- 
stancy of the phase space 

Ions represent a system consisting of n particles correspon- 
ding to f degrees of freedom in the phase space. Hence 
t,heir tot,al mechanical state is described by F = nf gene- 
ralized configuration coordinates and F generalized con- 
jugate impulse coordinates, therefore by a point in a 2F- 
dimensional space in which the fundamental laws of me- 
chanics read: 

K=W;H,Y= O 1 +lf xf 
-lfxf 0 1 (1) 

11 = H(q’,~k) is the Hamiltonian, 

ii = [(I’ .qf pi .pflT E RzY , (2) 

ii = -8H/dqj and $j = dH/ap, are canonical conjugated 

variables. Given H = H(x,t) from (1) follows 

w -$ Ii(&) = FH(E:t) , (3) 

where GH is the Hamiltonian vector field representing the 
time derivative along the trajectories in the phase space. 
Due to the fact that the Hamiltonian vector field qH has 
always vanishing divergence in phase space R’f for ar- 
bitrary phase space function F = F(I?, 2), it follows 

5 VH(E,2) = 0 

By using Reynold’s transport theorem and Gauss theorem 
results Liouville equation [l]: 

a0 - = VH(R,t)fg &t) = -2 i, g = {el HI , (5) 
at 

de- 
dt - 

0 

Q( E, t) d”E permits the probability of finding /V particles 

in the volume of the phase space d”J? at time t. Now 
eq.(5) for 3 degrees of freedom is represented in the follo- 
wing form 

JJJJJJ e(ql,~2,~3,~1,~?:~3)dq* dadahdpzdp3 = 

= const. (6) 

The local distribution, i.e. angular and energy distribu- 
tion, immediately results from the angular distribution of 
the degrees of freedom, corresponding to each of the 3 
space axis, the coordinates x, y and z. and the classical 
impulses mi, my and mt. 

Assuming the following that x, pr and 9, prl are the 
conjugate canonical variables, secondly that the total 
energy and the impulse remains constant in z-direction and 
thirdly g(z,p,,y,py) factorizes as follows ~(r,p,) .~(y,p,) 
in the (z, y)-plane, the invariants 

JJ ~(r,p,) dx dp, = const., JJ ~(Y,P,) dydp, = comt. 

(7) 
can be derived by means of (5). But the classical impulses 
rni and my are not always canonical impulses conjugate 
to the classical coordinates 1: and y. 
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L!lorcover, eq.(iL) shows tllat the conjugate canonical va- 
riables ent,er int,o the general expression of the Hamilton 
funcliou 

II = Cpidl - 1, (8) 

rt~lnted t,o thcx corresponding Lagrange funct,ion 

whcrt e.g. L could have the form [2] 

L = -mc2 dC-jF + e(77. Aj - e@ (9) 

tlcscribing the motion of a charged particle in elect,roma- 
g11r.t ic fields with II = potential energy, T = kinetic energy, 
@ = scalar pot,ent,ial, il’ = vector potential. Example (9) 

shows that~ the presence of the term (5.A) leads to a more 
c~nmplicatcd relat,ion between the canonical impulses pT 1 p, 
(conjugate t.o s,~) and the 3 classical impulses mu?, my, 
,ilf t,hus prc\,c:nt.ing us from specifying invariants similar 
to (7). 

Supposing that ttir t.ot.3.l Ilamiltonian split,s addit,ively 

ill -. -. + . 
JI(Ril), R(Z)) = f~l(ql,) + fMq2)) (10) 

where I?, ] ) and IT(y) arr collect-ions of conjugate canonical 
Variill)lCS. ‘1’1i(~ time derivat,ive of t,he project,ed volulne of 
the phase space is giveu as follows: 

$ [ y,(,i,h,l AWN\ = 0 (11) 

‘I’hf, iutcgrat,ion in (Y.( 11) applies to t,he projection of the 
totill 1)lia.W spa-f‘ doiiiain !~(1) t.o t.hc corresponding plane. 
111 itdtlit.ion, the following condit,ions lriust, be fulfilled 

g(1) c RN IT;(,) E If”” ( fij2) E R”’ ~ N(l)+N(‘L) = A’ 

‘l‘llr validity of (11) can 1)~: proven in analogy to (4)) for 
i~s:mi[)le for thr projcctiou in t.hr? y,py-plane. as follows 

d - 
d/ 

i 
J 

dydp, = 0 

I"(Y(l))(,,,,y)-PI.nr I 

‘10 actlic\-c: (7) appropriate coordinatc,s wit,h the property 

JJ ~(-‘,p~) d,- dy, = cord. (12) 

arc introduced. so that frolti equ.( 12j 

J//i' Q( .r , pr , y, py ) tfx dpr dy d/‘y = co71st. (13) 
I . 

is d~~rivctl, wlic,rt, t htx 3corirponcnt. of t,he impulse of t.Ile 
part iclc is assull~ctl to bc constant,. 

III. The emittance space and the 
emittance area 

In the previous chapter it is demonstrated that the equa- 
tion of motion of the trajectories (with time indepen- 
dent fields), relating six independent variables is overdeter- 
mined, one of them beeing taken as a parameter. 

Now starting from the general form of the canonical con- 
jugated coordinates pi = dqi/dt the corresponding im- 
pulse in the x-coordinate 

dx dt dx 
px=~=~d==pix’F‘:pox’ (14) 

is derived in a field free space. When t,he requirement, 
which has already been substantiated, 1~~ = ~0 = coast. = 
1 is inserted, then 2’ is the canonical coordinate conjuga- 
ted to x and has the meaning of an angle projection onto 
the (x, =)-plane. This angle measures then deviation of 
the path of the particle from the z-axis. Therefore, the 
(x,p,)-subspace of the phase spa.ce can be replaced by the 
(x,x’)-space and respectively also (y,py)-subspace can be 
replaced by (y, y’)- p s ace thus leading t.o the emittance spa- 
ces E,,E,. 

Fronteau called such spaces “double degenerated phase 
space” because of p, = po,pa = 1. Explicitly stat,ed, 
E, coordinized by x and x’ the emittance space for the 
x-direction and E, (coordinized by y and y’) for the 
y-direction respectively. The area that arises from both 
ernittance spaces E is named emittance area FZ,, and Fyvl ) 
see also Fig.ld. 

l:igure 1: Schemat,ic represent,ation of t,he emittance 
area (a-d) and for measuring the emitt,ance (e) 
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IV. Electrostatic arrangement 
and emittance area 

For the potential of an electrostatic arrangement consisting 
of three lenses one can use t,hc approach [I] 

3 r @” 
VyJAyfj ( A<R. 

There are Ci - voltage between two lenses, A - distance 
between them, R - radius of iris and Q - component of cy- 
lindrical coordinates. Now t,he potential is r-independent. 

The corresponding Flatniltott function of a particle in 
this system reads 

H=~+~,-qj~A~(x2+ya)~ . (16) 

Eq.( 16) shows that the canonical impulse conjugated to 2: 
is ittdepettdettt of y. Therefore the equation of motion in 
any of t,hose directions is dependent only on its respect.ive 
direction coordinates and not on the other coordinates. 
Eq.( 16) pertttits to derive the subsequent equalions of mo- 
tion 

d”X 2 
j-.L++=u, 

L 
+J+&y=[J -? x 

3 qC’An1 t2- ___ “0 - -1 R3p; 1 Pz = PO 

In order to examine the emitt,ance area the initial condi- 
t,iotis 

dy dz 
* = -0 = 0 =s y = yo,x II x0, - = 0, _ = 0 dz dz (18) 

lead to uttique solut,ions of the subsequent specia.l forms 

xpo (2) = x0 cos(woz) , Ypu(Z) = yo coqiv’oz) (19) 

xbu(z) = -1p0 sin(ti(j=) , I&(Z) = --yodo sin(tioz) 

and reprcsettt ellipses paramr+ixed by 2 (Fig.la) characte- 
rized by tltr sctn-axis EU, ii;xu and ~0, dye respectively. For 
further invest,igntions, we present a detailed treatment of 
the emittatice space .!?,,I. It, is proved below, if this calcu- 
lat#ion of emitt,attce arca wit.ltitt t,he beam guiding system 
is adequak yielding a st8ntemettt about the constancy 01 
cmit.t,ancc arCa and t.he goodness of the used approaches 
with reft>rencr to the measuring apparat.us developed for 
this project (Fig le). This device for tneasuring the emit- 
tance consist mainly of a Faraday cup. The cup is movable 
in is-direct,ion and picks up t,he current in z-direction. 

In case of varying the itnpulse 2, frotti yo t.0 p’ = y. + Al) 
t,he new orbit,al equat,ion trsitrg t,he same initial conditions 

(18) 
xp”+AT(z) = X[) cos(wo[l - 61:) (20) 

it!’ ,,+n,,(~) = --ZOUJO( 1 - S)sin(wo[l - E]z) 

also describes an orbit, of art ellipse wit,h a changed angular 
velocity ii’ = wu( 1 - n) (Fig.1). 

Defining 5 = Apjpo as the ratio of t,lte variation Ap and 
the impulse po at the beginnittg, the subsequent etnittattre 
area (Fig. Id) 

7 

AFZ,l = ,m 

j’ 5 
-xouJ; t 0 = 2101 Lx&& (21) 

x0 -~oW,2L(l - 6) 0 

is evident and the above formula is valid for all p, po 5 

P I (PO + ApI and where L = 2.4 has been introduced. 
The term w2L equals f-‘, f beeing the focal lengt,h of the 
electrostatic lense. The increase of emittance area there- 
fore reads 

AF,,, = (22) 

where ~~~~~~~ = x0 and $maZ) = z~J~L have been used. 
The difference of the angles 

AZ’ = z;+~JL) - i&(L) 

can be expressed as 

Ad = roui;L 26 

so that 

(23) 

(24) 

Ax, = xii’, - XEz - xa, + J:a, 
(25) 

a? - cIt 
xE=rcospE . 6, = r cospa 

follows considering the geometry of the tneasurittg appara- 
tus (Fig. le). 

V. Conclusion 

For definite assm-nptions of technical relevance, the Ilamil- 
tonian of electrostat,ic devices is separable. In that case a 
good approximation can be achieved with the assumpt8ion 
z >> R regardittg. 

The assumption z >> R is evident, for instance in tltc 
accelerator-technique of nuclear physics the component 
of focussing possesses a greakr distattcr from t.hc t#argct 
cltambcr. This statement is detnonst,rat,ed in cq.( 16). 

Eq.(25) represents a sitnple solution for construct,ion of 
an apertural measurement. of the ctnitt.ance. 
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