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Abstract 

The escape rates and evolution of a distribution of particles 
are considered for a 2-D model of transverse motion of par- 
ticles in hadronic storage rings, when nonlinear resonances 
and external diffusion are present. Dynamic enhancement 
of diffusion inside separatrices can develop under a certain 
geometry of resonance oscillations and relatively wide reso- 
nances, leading to the fast growth of distribution tails and 
escape rates . The phenomenon is absent in 1-D. 

1 General description 

In hadronic colliders, the escape of particles to large be- 
tatron amplitudes and associated growth of distribution 
tails due to the small random modulations of the lattice 
parameters (predominantly the RF power) is an impor- 
tant practical issue. Experimental evidence indicates that 
the escape rate has an appreciable magnitude only in the 
presence of the beam-beam interaction. However, to the 
present knowledge we cannot expect a fast escape of par- 
ticles to originate from the beam-beam interaction alone. 
Therefore, it seems apparent that the external noise and 
the beam-beam nonlinear dynamics Ynterfere” somehow 
to efficiently magnify their respective effects. The present 
paper (a concise version of /I/) is devoted to the descrip- 
tion of one particular mechanism of amplification. 

We will discuss the effect of noise on Hamiltonian dy- 
namics, more particularly the following system: 

2’ = p’ 

p’= 
BU(z’, t) 

-82’ + &d4 

where r~ is the diffusion intensity. &(t) here is the white- 
noise vector process (&(t)&(t + r)) = &k6(~). The po- 
tential U is supposed to consist of an unperturbed time- 
dependent part Uo( 3 z corresponding to exactly integrable 
motion and a small perturbation U = Uo+eaU(z’, t), time- 
periodic with frequency n. Since in realistic situations, the 
beam is small relative to the aperture during the entire 
storage time, we will be concerned with the distribution 
tails only. 

For this model, the situation will be quite different de- 
pending on what type of Hamiltonian dynamics one is 
considering. The simplest case is when the dynamics is 
exactly integrable. Then, one can envision it as (topo- 
logically equivalent to) the trajectotries spiralling around 
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the constant-action tori with a simultaneous diffusion in 
both phases (position on the torus surface) and actions ( 
tori radii). In many c-es however, the diffusion inten- 
sity is small, so that the trajectory densly covers the tori 
surface before moving appreciably in tori radii. One can 
then perform a suitable averaging on before-said surface, 
as it is common in the conventional Fokker-Planck prob- 
lems /2/, and reduce the evolution to a certain diffusion 
process in the space of actions only. In most cases the de- 
pendence of diffusion intensities on actions will be smooth 
and monotonous, so that the evolution of any initial 6- 
functional distribution will be at least qualitatively similar 
to a usual gaussian spreading for coordinate-independent 
diffusion, without any “structure” to be observed. The 
tails of distribution, which are responsible for the parti- 
cle escape to the distant boundaries, can be described in 
the same way as in the weak-noise asymptotics (WNA) for 
conventional nonequilibrium systems (with damping) /3/ 

= P = Z exd-4/v) w h ere Z and # are both functions of 
phase space variables and time while r) is the general factor 
of diffusion intensity (small parameter). The function 4, 
defining the exponential smallness of the transition prob- 
ability from given initial condition, can be easily shown to 
depend on time as 4 = v/t. The (time-dependent) escape 
rate r from any given initial condi- tions can be found in 
weak-noise approximation as z = Rexp(-G/r]), where G 
is the minimum of 4 on the boundary G = v,,,i,/t. Thus, 
time-dependent escape in purely integrable Hamiltonian 
systems under the influence of weak noise can be analyt- 
ically described through the combined implementation of 
averaging along Hamiltonian trajectories and WNA, and 
does not show any pecularities. 

More difficult case is when the Hamiltonian is not ex- 
actly integrable, but only nearly so, i.e. consists of an ex- 
actly integrable time-independent part and a small pertur- 
batron (with periodic, if any, dependence on time). Such 
perturbations are known /4/ to drive nonlinear resonances, 
which constitute in their turn an everywhere dense net 
of progressively (higher orders)/(narrower widths). The 
question then is, first, how can each undividual resonance 
affect the evolution of distribution tails and, second, what 
is the combined effect of many resonances. From a quali- 
tative considerations one can infer that the answer will be 
quite different in 1-D ( one spatial coordinate) and higher 
dimensionality. Indeed, in 1-D the only spatial scale, as- 
sociated with each resonance i is its width, which is pro- 
portional to the square root of perturbation strength c. 
Choosing, to be more particular, the unperturbed action 
space I, one can also say that the sum of all widths of res- 

0-7803-0135~8/91$01.00 @IEEE 
1678 

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1991



1 
IY 

i 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

Figure 1: Displacement of resonance oscillation center by 
transverse kick. Thick solid line is the resonance line. 
Dashed lines are the separatrix. 

onances Aint = xi& AI4 is finite and proportional to 4. 
The zmallness of Aint for small c means, loosely speak- 
ing, that the resonances cover only a small submanifold 
of any given region of I axis. It is quite clear that the 
perturbation of 4 by resonances A4 = 4 - ~$0 (the differ- 
ence of 4’s with and without resonances, which we expect 
to be always negative) in 1-D should be of the order of 
A int, and thus small for small e. Otherwize put, in 1-D 
the effect of (Hamiltonian) perturbation on escape rate is 
small as long as its “mechanical” effect is small. In accel- 
erator problems, in most cases the resonance widths are 
much smaller than the characteristic apertures where par- 
ticle loss occurs; then in 1-D the transport ability of these 
resonances is minimal, sine&heir influence is confined to 
a small region near their separatrices. 

In 2 and higher dimensions, resonances are surfaces (or 
lines) in the action space, and the possibility of the par- 
ticles to diffuse along them staying inside the separatrices 
changes the situation completely. The major reason for 
this is a certain “renormalization” of diffusion inside sepa- 
ratrices, leading to an increase of diffusion intensity along 
the surface. This can be explained, in 2-D for simplicity, 
as follows. In the plane of actions I,, I,, , where resonances 
are lines, one can draw the arrow of separatrix oscillations, 
which shows the direction of trapped particle oscillations 
about the resonance line. Its length A is simply the width 
of the zeparatrix (or twice the maximum oscillation am- 
plitude) and its center is the resonance line (see Fig. 1). 
Now consider a small kick 6 applied to a trapped particle 
in the direction orthogonal to the resonance line; it is clear 

that the center of oscillations will be displaced a distance 
6cot(a) along the resonance line. Similarly, if we intro 
duce noise of intensity q in this direction, then the diffu- 
zion of the oscillation center along the resonance will have 
the diffusion coefficient qcot(a). Thus, for small angles 
Q between the resonance oscillations and rezonance line, 
diffusion is enhanced inside the separatrix. This enhance- 
ment has been termed diffusive “rezonance streaming” and 
is well known /5/. For escape rate and distribution tail 
problems, it leads to a very strong effect, since the parti- 
cles can travel long (as compared to small resonance width) 
distances along the resonance lines while staying within the 
regions of enhanced diffusion intensity. The density in the 
distribution tails and associated escape rates increase ex- 
ponentially strongly. More particularly, the decrease of the 
function 4 by the effect of the resonances is of the order of 
unity h-$0 - 40 even for small perturbation strength e (as 
long as l > q), which iz a drastic exponentially strong am- 
plification of the effect az compared to 1-D. The power of 
the exponential in the ezcape rate can increase thus several 
times, making the phenomenon spectacularly strong and 
supposedly important for applications. One can say that 
unlike in l-D, the effect of (Hamiltonian) perturbation on 
escape rate in 2-D can be large even when its “mechanical” 
effect is small. The situation is somewhat similar to the es- 
cape rate and distribution function behaviour in oscillator 
with nonlinear resonances, damping and noise /6/, where 
both damping and diffusion are “renormalized” within the 
separatrices. 

It should be stressed that the WNA description of the 
system, with the “resonance streaming” emerging as it’s 
ingredient is essentially relying on the condition e > 71 of 
the resonance being wide enough relative to the noise in- 
tensity. When this condition is violated, the situation is 
getting more involved The basic dynamic process to take 
into account to evaluate the “macroscopic”(i.e. involving 
distances much larger then the resonance width) transport 
rate along the resonance line is the diffusion of particles in 
transverse direction, 50 that because of the different longi- 
tudinal diffusion intensities inside and outside of the sep- 
aratrix, the transverse diffusion modulates the longitudi- 
nal one. This makes the effective one-dimensional random 
walk along the resonance line a more complex stochastic 
process, in fact not even describable by any sort of diffusion 
process. 

When trying to apply the WNA to a generic noisy 
nearly-integrable oscillator, which posesses an infinite hi- 
erarchy of arbitrarily narrow resonances, one immedeately 
runs into a major difficulty. Indeed, the condition of the 
resonance being wide enough in respect to noise EV, > 7 
(V, here is the resonance harmonic amplitude), will break 
down for all resonances of high enough order. Therefore, 
the “resonance streaming” diffusion enhancement scenario 
/g/, implicitly relying on this condition, is essentially in- 
complete. The fuller description, carried out in /I/ in a 
certain phenomenological approach gives the overall effect 
of the resonance as dependent on the width A - 6 of 
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the resonance, going to zero as A tends to zero. This in- 4. B.Chirikov, Phys. Rep. 52 (1979) 263 
traduces a certain cutoff of narrow enough resonances and 5. J.Tennyson, Physica 5D (1982) 123 
“regularizes” the problem. 6. A.Gerasimov, Physica 41D (1990) 89 

2 Concluding remarks 

Few observations are in order about the more technical 
(though very important) question under what conditions 
can it manifest itself in the real hadronic colliders. The 
necessary condition of resonance-induced enhancement is 
the condition (54) of Ref./l/, requiring smallness of an- 
gle between the resonance line and resonant oscillations 
direction. The question then is when this small angle can 
appear. The important point is that this angle is deter- 
mined only by the nonlinear tune shifts 6u,, 6u,, depen- 
dencies on betatron amplitudes A,, A,, and not by the 
harmonic amplitudes (defining the resonance width). The 
tune shifts are created by both the multipole components 
of magnetic fields and the nonlinear beam-beam interac- 
tion field. Since the hadronic beams are usually round , 
the beam-beam interaction is symmetric and preliminary 
numerical evidence is that the resonant oscillations are al- 
ways nearly orthogonal to the resonance line. Thus it does 
not look likely that the phenomenon can manifest itself in 
the absence of multipole components. Superimposing the 
latter on the top of beam-beam interactions can however 
change the situation. 

Consider now the effect of the multipoles in the absence 
of beam-beam force. The lowest order multipole tune- 
shifts come either from the first-order perturbation term 
of the octupole component or the second-order one of the 
sextupole component and have the same functional forms: 

15, = CIA; + CaA; 

6u, = C2A; + CsA; (2) 

where A,, A, are the betatron amplitudes and the coef- 
ficients Cl, Cz, C’s are the integrals of the multipole am- 
plitudes along the ring and can vary in respect to each 
other in the wide range. It is easy to see that the res- 
onance line is straight in the action variables .7, = A%, 
.7x = Ai and that the angle between this line and the 
resonant oscillations can be varied arbitrarily by varying 
the constants Cl, Cr, Cs. Thus the phenomenon of the 
resonance-enhanced diffusion can be more easily observed 
in the absence of beam-beam interaction and is conceivable 
when both beam-beam interaction and lattice nonlineari- 
ties affect the tune shifts. 
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