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Abstract 
Particle tracking codes for large storage rings approxi- 

mate the Hamiltonian by neglecting terms of order x/p and 
higher. For storage rings with small bending radius mag- 
nets like the Super Conducting X-ray Lithography Source 
(SXLS) [l], which make use of combined function bend- 
ing magnets, these approximations cannot be made. We 
use an explicit symplectic integrator [2] to construct a 
tracking code which uses the exact Hamiltonian for drifts 
and isomagnetic combined function bending magnets, in a 
manner similar t,o the Teapot code [3]. Hard edge fringe 
fields are included in a symplectic manner for dipoles and 
quadrupoles. The integrat,or is coupled to the DA package 
of Berz [4] to provide an arbitrary order map which can 
be analyztad using the tools of Forest and Irwin [j]. A dis- 
cussion of the techniques and an application to the SXLS 
ring at Brookhaven is presented. 

I. INTRODUCTION 

The present note describes our modeling of a compact 
synchrot,ron xray lithography source, the SXLS device [l]. 
Tlic first phase of this device, which incorporat,es conven- 
tional electromagnets, is in operation at Brookhaven Na- 
tional Laboratory and is described in a separate presenta- 
tion at. this meeting. SXLS, which is being developed at 
BKL in cooperation wit,h Grumman Aerospace Corpora- 
tion under the auspices of the Defense Advanced Research 
Projects Agency, ’ is intended t,o eventually serve as a 
commercial x-ray source for the lithographic production of 
comput,cr chips. 

The second phase of this device will incorporate 3.87 
Tcsla superconducting combined function bending mag- 
nets \vhi<h are being const,ructed by General Dynamics 
Corporation. The design of t,hese superconducting mag- 
nets and t.heir effect. on the optics of the phase II device is 
our principal concern. 

SSLS has an 8.5 meter circumference a 60 ccntime- 
ter bend radius and an unique gradient. FODO-like lat- 
tice structure. The small size of the device implies that 
some approxima.tions made in large-machine codes are in- 
valid, in particular, the dropping of terms in the Hamil- 
t,onian of order .r/p and higher, where ;I: is horizontal de- 

‘~11is work was performed under the auspices of the U.S. Depmt- 
ment of Energy and funded by the 1.‘.S. Department of Defense 

viation from the closed orbit and p is the bending radius 
of the design orbit. Analysis is furt,her complicated by the 
strong effect of high-order magnetic field multipoles, the 
combined function nature of the dipole magnets and the 
relatively large fraction of the device circumference occu- 
pied by fringe fields. 

We have not yet addressed all of these problems in our 
approach to modeling SXLS. For example, our analysis of 
non-isomagnetic effects is currently done through Marylie 
3.0 and a Genmap-like code [6] tailored specifically for 
SXLS. However: we have begun to develop a computational 
t,ool, the Krakpot code, which, we believe, will eventually 
let us answer many of our unresolved questions. 

The principal result of our work is that in devices of 
this small size it is import,ant to make the high order field 
multipoles as small as possible. Failure to do so reduces 
the dynamic aperture. In order to determine t.his result, 
we have had to push the state-of-the-art in both magnetic 
field calculations and t,racking code design. 

II. OVERVIEW OF KRAKPOT 

Krakpot,, so named because of both because of it,s origins 
in Teapot[3], is an analysis code, not, a design code. At 
present, it. incorporates l a drift, l a combined funct,ion 
straight element, l a combined function bend element, l a 
simple RF cavity kick, and l hard-edge fringe elements. 

The combined function elements are all of the isomag- 
net.ic type. In each of the element,s the Hamiltoman is split 
into one or two exactly soluable pieces as in Teapot [7], 
and the result,ing equations of motion used to implement 
an explicit canonical int,egrator. 

Quadratic, fourth order [2], and sixth order integrators 
are all implemented within the code, and higher order jnte- 
grat,ors are possible. Also present in the code are a routines 
for the tracking of orbits, determinat.ion of the dynamic 
aperture, and a six dimensional fixed point finder. 

The code is intimat,ely linked to the numerical 
different,ial-algebra (DA) package [4] of Berz. ’ A “DAi- 
fied” version of each element and each canonical int,egrator 
exists. An arbitrary order Taylor map through a succession 
of element,s can be generated and saved for later analysis. 

2Thi~ DA pdcage was developed by Dr. Martin Ben at Lawrence 
Berkeley Laboratory in 1987 and 1988. It. has been considerably 
modified by the LBL Exploratory Studies Group. The original author 
cannot be held responsilsle for its contents. 
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The map analysis is carried out t,hrough post-processor 
codes based on the LIELIB package of Forest [5]. These 
extract the normal form of the map, yielding the tunes, 
chromaticities, geometric tune shift with amplitude and 
other dynamical lattice parameters. 
III. DODECAPOLE ORDER CO~IBINED FUNCTION DIPOLE 

The Ilamiltonian for an isomagnetic combined function 
bending magnet can be written in cylindrical coordinates, 
with longitudinal distance as the independent variable of 
integration, as a sum of two explicitly soluable pieces, a 
drift-like term 

and a kick 
As(x, Y> Nk = -(l + z/p) y--y. 

In Krakpot, the midplane field expansion for A, has been 
carried out to dodecapole order (x5) with *MACSYMA us- 
ing a stream function method [S] developed for the treat- 

An exact solution of the equations of motion of each of 
these Hamiltonians is straightforward and given by Forest 

ment of non-isomagnetic bends. 

[7]. Incorporation of the solutions into an explicit canon- 
ical integrator is straightforward. A quadratic integrator 
results by applying the drift t,ransformat,ion for half a time 
step, t.he kick transformation for a full time step, and then 
the drift transformation again for half a time step. 

One minor difficulty of this method in the combined 
function bend is that the closed orbit, for which initially 
x, y, t, P,, Py , Pt are all zero and P, = 1, is not sent into 
the closed orbit. The size of the closed orbit error is given 
by the order of the integration method. A quadratic inte- 
grator applied to the isomagnetic combined function bend 
yields, to lowest order, closed orbit errors of 

s* 
Pz(s) rz 6, z(s) c;: - 

12p3 

A simple subtractive procedure is adopted in Krakpot to 
avoid buildup of the closed orbit error over many timesteps. 

For a given element, the closed orbit, errors from a single 
time step are calculated and saved. Thereafter, these saved 
errors are subtracted from the result of every time step for 
a general orbit. This subtraction procedure is symplectic, 
since it is only a translation of the origin of phase space, 
retains t,he order of accuracy of the integration method, 
and preserves the closed orbit to machine precision. 

In the DAified versions of these transformations, the 
six canonical dependent variables (x, y, t, Pz, Py , Pt) are 
declared as independent DA variables. Arbitrary order 
derivatives of the canonical transforms with respect to 
these variables can then be manufactured for the whole lat- 
tice by concatenation of transforms from single time steps. 
An Nth order Taylor map generated in t,his fashion is au- 
tomatically canonical up to terms of order 2 N + 1, which 
is the order of the error term in the Poisson brackets of the 
Taylor map. 
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Figure 1: Comparison of Krakpot and Marylie Isomagnetic 
Apertures 

Several codes have been applied to SXLS and disagree 
in their predictions of even the first-order chr0maticit.y. 
The Marylie 3.0 code makes minimal approximations and 
is well suited for comparison with Krakpot. 

IV. COMPARISON TO MARYLIE 

Figure 1 overlays dynamic apert,ures found using isomag- 
netic element,s with Marylie and Krakpot. Horizont#al and 
vertical tunes were parked at the design values of 1.415 and 
0.415 respectively. Sextupole elements in the lattice were 
adjusted to yield a chromaticity of 1.0 in both planes. On 
energy orbits were tracked symplectically for 1000 turns 
through the lattice. Tracking was done on an element by 
element basis in Marylie using the circulate command. The 
dipole was split into four pieces to improve accuracy. Each 
element in the Krakpot code was divided into as many 
as one hundred explicit canonical transformations. Even 
though the tracking methods used differ considerably, the 
apertures agree. This agreement extends to the values of 
nonlinear lat,tice parameters found by a normal form trans- 
formation of the one turn maps, which can be carried out 
to only third order with Marylie. 

V. RESULTS FOR SXLS 
The chief impetus for the development of Krakpot was to 

obtain a reliable tool for the modeling of high order effects 
not treatable with the Marylie 3.0 code. Based on previous 
code result,s, we expected that bending magnet multipoles, 
of octupole order and above, would have a significant effect 
on the SXLS dynamic aperture. This has turned out to be 
the case, and has a considerable impact on the design of 
the bending magnet. 

The results presented below were all generated with 
Krakpot using isomagnetic elements and hard edge fringes. 
Since tracking was carried out using explicit canonical inte- 
gration rather than a taylor map, the only approximations 
in order are made in the expressions for the vector poten- 
tial. 

Figure ‘2 gives the variation of on energy dynamic aper- 
ture as a function of the magnitude of octupole (8s) in the 
180 degree bending magnet. 

The improvement of aperture with the addit#ion of a 
small amount of octupole shown in Fig. 2 may explained 
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Figure 2: Variation of SXLS Aperture with Octupole 
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Figure 3: Variation of SXLS Aperture with Decapole 

by the form of the vertical tune shifts with amplitude 
as a function of the octupole strength, IIyv = -28.16 + 
7.08 &/Do. Vertical aperture can be increased by reduc- 
ing IIyv to zero with an appropriate choice of &I&J x 4 
with relat,ively little effect on the horizontal aperture. 

Aperture variat,ion with decapole is given in figure 3. 
Dccapole components on the order of lo4 T/M4 are quite 
likely in small radius, combined function, bending magnet,s 
designed without regard for higher order multipoles. 

Trim windings, mainly for controlling the quadrupole 
and sextupole moments, have been included in the design 
of the SSLS phase II magnet because of our concern about 
some of these effects. 
VI. DA APPLIED TO MAGNETIC FIELD CALCCLATIONS 

We have written a new code which applies the DA pack- 
age to the Biot Savart, law, in essence, differentiating under 
the integral sign. The output of t,he code is not only the 
three components of the magnetic field at a point but also 
the arbitrary order spatial derivatives of the field compo- 
nent,s at the point, that is, the field moments. This proce- 
dure gives a more accurate local estimate of the moments 
than may be obtained from the alternative procedure of 
fitting a polynomial to the field at, several points. We plan 
to apply this code to fringe regions in t,he Krakpot code. 

A bonus of this approach is that the conductor posi- 
tions, or combinations of them, may be declared as DA 
variables, yielding the derivatives of the various moments 

with respect to conductor position. Mechanical tolerances 
are immediately established based on the maximum toler- 
able amplitude of moments. Precise combinations of mo- 
ments may be sought by automated iterative adjusment of 
the conductor positions. 

VII. CONCLUSIONS 
Compact electron storage rings, like the BNL Supercon- 

ducting X-ray Lithography Source, present a significant 
challenge to the accelerator designer. A novel “Krakpot” 
code has been described, which has been developed to 
overcome some of the difficulties presented by these rings. 
Some of the techniques employed in this code may find an 
application in other accelerators. 
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