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Abstract 

The adiabatic dynamics of charged particles in accelerating 
structures is significantly altered if these structures vary in 
space rather than in time. Spatial variation occurs in, for ex- 
ample, free-electron lasers and radio-frequency quadrupoles. The 
adiabatic invariants for slow temporal and slow spatial 
variations differ. This causes the longitudinal emittance of adi- 
abatically trapped beams to differ in the two cases. The num- 
ber of particles trapped in each accelerating bucket also differs. 
We present analytic and numerical results to clarify these ideas. 

I. INTRODUCTION 
For a general Hamiltonian H(q,p,&t), which depends slowly 

on the time variable, the adiabatic invariant is the action: 

I(E,EO = #dHzEdq. (1) 

The action is the phase-space area enclosed by a contour of H at 
fixed time t. Slowly means that the particle executes many 
oscillations before the parameters of the Hamiltonian change 
significantly (indicated formally by taking &ccl). Invariance 
of the action allows one to solve for the energy at one time in 
terms of the energy at another time. Adiabatic theory has also 
been used to predict the phase-space area occupied by a beam 
adiabatically trapped in an accelerating potential. 

We analyze the case of adiabatic, spatially varying, acceler- 
ating structures. We show that the usual adiabatic invariants 
for the temporally varying case are not invariant in the spa- 
tially varying case. This affects, in particular, the arguments 
that give the area occupied by a beam that has been adiabati- 
cally trapped in a spatially varying structure. Our results apply 
to problems such as beam trapping in the accelerating potential 
of an RFQl or in the ponderomotive (decelerating) potential of 
free-electron lasers2 and to the rf heating of a tokamak 
plasma.3 

II. SLOW TEMPORAL VARIATION 
The wave Ilamiltonian, 

2 Wqwt) = 2m + eO(et) cos(k[q - u(et)tl). (2) 

describes the longitudinal motion in an accelerating potential. 
Here, e and m are the mass and charge of the particle. The am- 
plitudc of the potential is CD. The particles oscillate in a 
trough of phase velocity u and length 2x/k. 
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For trapped particles the adiabatic invariant is the phase- 
space area given by the usual closed-loop integral Qp dq. How- 
ever, for passing (or untrapped) particles, the loop integral is 
over one period (from kq=O to kq=2lc). We are, thus, able to 
define three different areas, or action functions, I+(E,&t) and 
IT(E,&t), which give the loop integrals along the-contour of 
energy E at time t for particles passing above (+) or below (-> 
or trapped (T) inside the stable region. 

This information determines the longitudinal emittance 
@base-space area) of a beam that becomes trapped. We sup- 
pose for example in Fig. 1 that initially the amplitude of the 
wave vanishes, and the beam is at momentum pi=m(u+A). At 
this time the value of the adiabatic invariant is the area under 
the curve p=pi: Ilxm(u+A)/k. AS the amplitude grows (with u 

remaining constant), the contour of H for these particles dis- 
torts, but has below it always the same area. However, evcn- 
tually there comes a time, called the crossing time tx, when the 
area under the more positive part of the separatrix equals the 
initial value of the adiabatic invariant. Beyond this time there 
is no passing-particle curve having the same area. Thus, the 
particles must become trapped. Furthermore, these particles are 
on and remain on a trapped contour of H containing area 
(16n1/k)Ak’~, where A,=A(et,)=e@(et,)/m, since that is the 
area enclosed by the separatrix at the time of crossing. 

These results determine the phase-space area occupied by an 
adiabatically trapped beam of particles. A beam extending from 
p=mu to p=m(u+A) occupies an area per wavelength of 
2xmA/k. As the wave amplitude increases from zero, first the 
particles with p=u become trapped. As the amplitude grows, 
the larger momentum particles become trapped. The largest 
momentum particles become trapped at an amplitude A, satis- 
fying 2rrA=8Akt2. This result is obtained by equating the ini- 
tial action with the value of the action on the separatrix. 

III. ADIABATIC THEORY FOR SPATIAL VARIATION 
For linear structures, such as RFQ’s or free-electron lasers, 

the Hamiltonian (2) is not appropriate. The potential instead 
has an amplitude that varies spatially: 

p2 WwJ) = 2m + eO(eq) cos(k[q - u(Eq)tl). (3) 

Now the particles see an amplitude growing as they enter the 
accelerating structure. After being trapped in a stable bucket 
they may be accelerated or decelerated depending on how the 
phase velocity u changes with position. 

To determine the new adiabatic invariant we introduce the 
phase-space variational principle, which states that the correct 
dynamics makes stationary the integral, 
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Fig. 1. Adiabatic trapping of a beam in time. 

Q. = j[p dq - H(q,p,at) dtl, (4) 
of the phase-space differential action, d&=pdq-Hdt. For histor- 
ical reasons the quantity &, which is a line integral along the 
trajectory, is also known as the action. The other action (1) is 
related to & by being the integral around a closed loop of 
constant H at constant t. The Euler-Lagrange equations for the 
functional (4) are exactly Hamilton’s equations. Adiabatic 
theory follows when the Hamiltonian H is a slow function of 
the independent variable (t). In this case, the loop integral of 
the other conjugate pair (q,p) at constant slow pair (t,H) is the 
adiabatic invariant. 

For the spatially varying case, Q. has the following form: 

Ctq = j[p dq - H(q-ut,p,q) dtl, (5) 

which is not the form required by adiabatic theory. However, 
we can put $ in the appropriate form by fmt subtracting the 
total differential mu2dt/2, then adding and subtracting the term 
(pudt) to obtain 

aq = j[(p + K/u) d(q - ut) - (K/u) dql , 
Wht92 

K(q-utq,&q) = + + e@(aq) cos(k(q-ut)) 

is equal in value to the Hamiltonian obtained by transforming 
to the frame moving with the phase velocity. 

The action integrand is now in the form needed to determine 
the spatial adiabatic invariant. The new momentum z=p+K/u 
is conjugate to the fast variable q-ut. The new Hamiltonian K 
depends slowly on the independent variable q. Thus, the new 
adiabatic invariant is given by the integral, 

J = ~(p+Kju) d(q-ut) = Ip d(q-ut) + (K/u) jd(q-ut) , (8) 

along a contour of constant K. The last equality in Eq. (8) 
follows from the fact that K is held constant in the integration. 

For trapped particles, the phase (q-ut) begins and ends at the 
same point. Hence, the second term vanishes and we have, 

JT(1) = qp d(q-ut) E 21. (9) 
The last equality defines the variable I, which for trapped 
particles is simply half the enclosed area. This factor of l/2 
makes I a continuous phase-space variable. 

For passing particles, the phase q-ut does not begin and end 
at the same value, but changes by 27r/k. Thus, the adiabatic 
invariant for + passing particles is given by 

J&q) = I + 27rK(I,&q)/ku , ww 
where 

2K 
I(w,K) = )P-u) d(q-4 (lob) 

is the integral along a contour of constant K. The convention 
chosen here of integrating in the direction of increasing phase 
q-ut makes I a signed quantity; it is positive (negative) for 
positive (negative) passing particles. 

IV. TRAPPING IN THE SPATIALLY VARYING CASE 
Invariants of the motion permit understanding of the 

dynamics without solving the differential equations. Because 
the adiabatic invariant J(I,&q) (referring collectively to the three 
functions J& and JT) is conserved, the trajectory stays on 
contours of this function. This allows us to determine the 
value of I as the particle moves through the accelerating 
stxucture. 

WC show in Fig. 2 a contour plot of J&&q), with contours 
divided into four regions by the I axis and the heavy curves 
outlining what appear to be lips. This outline indicates the 
location of the separatrix, which is given by I=f8(m/k)A1fl. 
The lips vanish at large distances, where the accelerating 
potential vanishes. Above the lips are the positive passing 
particles, and below the lips are the negative passing particles. 
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The trapped particles are in the upper lip, because for trapped 
particles I is positive according to Eq. (9). The lower lip is an 
unphysical region. 

We first discuss the trajectories in Fig. 2 which do not 
intersect the lips (i.e. do not become trapped). The top orbit, 
labeled (a), is an orbit that passes right over the structure. 
Similarly, the orbit labeled (h) is a left moving orbit that 
passes over the structure in the opposite direction. The orbit 
(g) and its mirror reflection on the right begin moving into the 
potential, but then are reflected. The corresponding particles 
arc reflected by the ponderomotive potential4 associated with 
the oscillating electric field. The orbit (f) moves into the 
accelerating structure, but its velocity is sufficiently negative 
of the phase velocity that it does not become trapped by the 
potential. 

Now we turn to the trajectories that do become trapped. 
The trajectory (b) collides with the separatrix, at which point 
the corresponding particle becomes trapped. For trapped 
particles, I is the adiabatic invariant, and so I remains constant. 
Eventually this orbit exits the structure at the other side, 
becoming untrapped. As indicated by the arrows, this orbit 
may exit onto a positive passing trajectory (c) or a negative 
passing trajectory (e) connected by the downward arrow. That 
is, the trajectory can exit out the top half of the phase-space 
separatrix or the bottom half. This phenomenon, beam 
uplifting, implies that a single beam becomes two beams after 
trapping and detrapping take place. The time reversed 
phenomenon is that there are two trajectories, (b) and (d), 
which trap at the same action. 

The trapping areas follow from application of this adiabatic 
theory. We consider a beam of particles with momentum 
pi=m(U+A) far from the accelerating structure. Such particles 
are in the positive passing state and have an initial value of the 
adiabatic invariant given by, 

J +i = (2nmM ( A + \A2/u 
> 

. 

These particles trap when the value of the positive passing 
adiabatic invariant on the separatrix, 

J +sx = 8mA1’2/k + 2xmA/ku, (12) 

equals the initial value of the adiabatic invariant. Equating (11) 
and (12) shows that these particles become trapped at an 
amplitude A, satisfying 

A + ‘A2/u = 4 A1’2/rr + 
2 X 

A /u x ’ (13) 

which implies that these particles are spread throughout an area 

16mAlD/k = 
X 

(32mu/kn)(lll +rc2A/4u+(nA/2u)2/2 - 1 > . (14) 

For small values of the momentum difference A (and, therefore, 
trapping amplitude), (14) reduces to the result obtained in the 
time varying case. 

V. CONCLUSIONS 
The case of adiabatic, spatially varying accelerating structures 
differs significantly from that of temporally varying adiabatic 
structures. The adiabatic invariant for passing particles is not 
the action (lob), but rather the “new” adiabatic invariant (lOa). 
The phase space area finally occupied by a trapped beam in the 
temporally varying case is invalid; that result is replaced by 
(14). In addition, ponderomotive reflection appears. 
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Fig. 2. Contours of the spatial adiabatic invariant for 0 gaussian in shape and keQma,=0.4mu2. 
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