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Abstract

Further dynamic aperture studies on an ultra-low emittance
damping ring lattice are presented. A past conference paper|l
explained how the fast damping rate, the low emittance an
the large dynamic aperture are acheived for this lattice. Dy-
namic aperture improvement with octupole correction was also
reported. In this paper the dynamic aperture improvement is
emphasized with a more systematic derivation and study of the
octupole correction. Also, the modified sextupole proposal of
Cornacchia and Halbach[2] is applied to the damping ring lat-
tice.

I. INTRODUCTION

The ultra-low emittance damping ring lattice reported in
a past conference paper[l] makes use of long dispersion-free
straight sections filled with strong wigglers to produce fast syn-
chrotron radiation damping. The lattice also has large radius
arcs with strongly-focusing FODO cells to produce low quan-
tum excitation. As Wiedemann points out in a proposal to
lower the emittance of PEP[3], both features yield a very low
equilibrium emittance. In the damping ring lattice proposed in
[1], an emittance of 2.5 x 10~ m-rad for a beam energy of 4
GeV is acheived {ep=ey=2 x 10"7m—rad8

To maximize the dynamic aperture (the range of stability
for transverse oscillations), FODO cell achromats as defined by
Brown and Servranckx[4] with non-interleaved sextupoles are
adopted. Although an interleaved achromat arrangement can
accomodate a larger number of sextupoles, thus reducing the
individual strengths, the dynamic aperture suffers greatly. In
both interleaved and non-interleaved cases the second-order ge-
ometric aberration sextupole terms are made to vanish. Thus,
vanishing second-order aberration terms does not guarantee the
maximum possible dynamic aperture[5)]. In general, sextupoles
interact with each other to produce higher-order aberration
terms which become important for low emittance lattices. Non-
interleaved achromats, as are implemented in the damping ring
proposed above, are simply a way to prevent sextupoles from
interacting in this way. Further examination shows that the
main geometric aberrations produced in these optics modules
are due to the lengths of the sextupoles.

In this paper, new analytical formulae for the sextupole
length aberrations are derived. Octupoles can be inserted into
the lattice to selectively cancel some of these aberration terms,
thus enlarging different parts of the dynamic aperture. Numer-
ical tracking of particle trajectories confirms this.

II. SEXTUPOLE LENGTH ABERRATION

The equations of transverse motion inside a sextupole are

1
z/I — _Em(lﬂ _ y2)’ (l)
y' = mazy. (2)

where m is the normalized sextupole strength, (e/cp)d* B, /dz>.

These equations will be integrated along the longxtudlnaT coor-
dinate s using an iterative method. One starts with constant
initial solutions z(s) = zo, z'(s) = x4, ¥(s) = w0, ¥y (s) =y,
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and iterate the following 4 steps,

20 ot [ (g —ve) i @
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until the resulting functions (polynomials in s) are of sufficient
accuracy. Keeping only terms cubic in coordinate variables, the
sextupole exit coordinates take the form

ZR.J(I Zjo + ZZT.J); Dz jozro

J=1 k=1

+Zzzb'g]k[(l)x]0rk01“10 (7)

=1 k=1 I=1
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for 1<i<4 where o3 =, 22 =z’ z3 =y, and 4 = 9', and lis
the sextupole length. The notation and formalism of nonlinear
matrix elements is that of K.Brown[4]. The R;; matrix elements
represent a drift space of length equal to the sextupole length.
The T;;; matrix elements are proportional to the integrated
sextupole strength. An achromat is designed so that the T;;«
terms for 1<1, 3, k<4 contributed by the sextupole pair within
the achromat cancel exactly. The U terms are called third-
order matrix elements, and are the most important terms for an
achromat with long sextupoles, since the contributions of each
sextupole of the pair add together. It is therefore sufficient
to examine the U terms of one sextupole for local octupole
compensation.

A. Largest Third-Order Matriz Elements

Out of 80 possible U;;x terms (for 1<, 3, k<4), 40 are non-
zero. Most of these are small. The strongest terms are found
by converting the z:z;z) factors into normalized coordinates.

The normalized coordinates are u = £//B, and & = /B2’ +
azz/+/Bz for the horizontal plane, and v = y/\/f, and o =

\/Byy' + ayy/+\/B, for the vertical plane. In a linear lattice,
the particle trajectories in normalized coordinate phase space
are circles (i.e., u? + 4% = 2J is an invariant). Inserting the
normalized coordlnate deﬁmtlons into equation (7) gives cubic
terms in u, %, v, and v, which perturb the value of the linear
invariant at every sextupole location. The coeflicients of the
cubic terms are the Uj;x; times some power of {/8;, where |
is the sextupole length. Normally in a storage ring, { < f;,,.
Therefore the most important nonlinear matrix elements have
the lowest power of I/f; 4.

One can repeat the same integration procedure above for
particle motion in an octupole field:

' = —215-0(:53 —3z9%), (8)
1 .
y' =20 - 3%y), (9)

where O = (e/cp)8®B,/dz°. The largest third-order matrix
elements for octupoles are the same type as those of sextupoles.
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If both sextupole and octupole fields are combined in a magnet,
the largest third-order aberration terms are

. 1 1 1 1

At = (_EOI + —172m213) 2u® + (501 + Em?P) BzByur’,
(10)

ni = (~g01+ m?t) B0’ + (5014 75m?tt) Bupyu®e.

6 12 Y 2 12 v

(11)

These two important equations summarize the largest aberra-
tion terms for a long sextupole and connect the aberrations

from sextupoles with those of octupoles. They are the basis of
octupole correction.

I1I. LocAL OcTUPOLE CORRECTION

An octupole field with strength O can be superimposed on
the sextupole field to cancel one or the other higher-order aber-
ration terms, but not both, unfortunately. However, one of
the two terms in each of these equations is much greater than
the other because the sextupoles are placed where 8. > 3y or
By > Bz for effective chromaticity correction. The larger of
the two terms must obviously be targeted for cancellation us-
ing the octupole field strength as an adjustable parameter. The
appropriate octupole integrated strength is

(12)

For instance, if 8 > By, this choice of octupole strength cancels
the u® term in equation (10) and also the small »° term in
equation (11), but increases the value of the coefficient of the
coupling terms uv? and u?v by a factor of four. Equations (10)
and (11) become

01=%m213.

1

At §m213,@xﬁyuv2 (13)
1

AD

a—m?laﬂzﬁyuzv (14)

For oscillations of equal invariant value in both planes (i.e. v =~
#) the ratio of the coupling term to the u® term is 43,/3.,
which is of order one for FODO lattices. The coupling effect on
the dynamic aperture from tracking doesn’t seem to increase
that much as a result.

For the other case, 8, > 8z, the largest term is the v® term,
which vanishes when the same octupole strength O = ——;—m212
is used. Note that the sign of the octupoles are the same in both
cases. The reason is that the main nonlinear effect produced
by the interaction of two sextupoles must always scale with the
product of the sextupole strengths. In the case of sextupole self-
interaction, the strength is squared, and the sign disappears.

A. Dynamic Aperture with Octupolar Correction

The octupole correction described above will be tested by
tracking the damping ring lattice with an octupole family cor-
recting each sextupole family. The damping ring uses two sex-
tupole families. To simplify the discussion the sextupoles that
correct the horizontal chromaticity are called SF sextupoles
and the SP-correcting octupoles, OF octupoles. Similarly, the
sextupoles that correct the vertical chromaticity are called 5D
and the correcting octupoles, OD octupoles. Figure 1 shows
schematically where the SF sextupoles are placed relative to
the focusing quadrupoles within the 90° FODO cell achromat
of the damping ring lattice. The required integrated strengths
of the octupoles are listed in Table 1. Ideally the octupolar
field should be superimposed on the sextupole field for proper
cancellation of aberration terms. In the tracking the octupoles
were modeled as a thin-lens inserted in the center of each sex-
tupole. Also, the sextupoles in the tracking were each modeled
as two kicks spaced !/2 apart. In this approximation the third-
order aberration term of the sextupole is reduced by a factor
of 3/4. The correcting octupole strengths are adjusted to can-
cel the third-order aberration terms of the two-kick sextupole.
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Figure 1
Achromat module for SF sextupoles

Table 1
Required octupole strength for correction
Associated sextupole
Octupole ol ml l
m) | m ]
OF 41.3 -16.6 0.3
oD 43.8 17.1 0.3

The difference in strength between the two-kick model and the
uniform model should not change the conclusions.

One can look at the octupole correction in stages. First the
octupoles (OF) that correct the SF’s where 8, > 8, are in-
serted. The calculated dynamic aperture for 8:=12.2 m and
By=2.2 m is shown in Figure 2. A large improvement is ob-
served in the stability in the horizontal plane, as one would
expect from equation {10), and none in the vertical plane since
the cancelled v* term in equation (11) is very small. The un-
corrected SD’s are responsible for the vertical aperture limit.
The OF octupole also has the effect of correcting the horizon-
tal tune shift with amplitude. When the octupoles (OD) that
correct the SD’s are inserted where 3, > 3, (see Figure 3) the
dynamic aperture in the vertical direction is improved.
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Figure 2
Dynamic aperture with SF-correcting octupole.
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When both octupole families are turned on (Fig. 4), the
stability along both axes is improved compared to the case with
no octupoles. However, the dynamic aperture along both axes
is smaller than the best possible values achieved when only
one octupole family is used. There is no improvement in the
area of the z-y plane where both = and y are large. This is
understandable because the octupoles do not remove nonlinear
coupling, but in fact increase it.

The dynamic aperture can be improved (up to 40%) and
shaped with octupoles according to one’s need. For instance
if only horizontal aperture is required, then only the octupoles
associated with the SF sextupoles should be turned on.

As an aside, a straightforward way of reshaping the dvnamic
aperture would be to redistribute the number of SF modules
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Figure 3

Dynamic aperture with SD-correcting octupole.
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Figure 4
Dynamic aperture with SF- and SD-correcting octupole.

and SD modules. If for some reason the horizontal dynamic ac-
ceptance needs to be much greater than the vertical one, then
the achromats used for SD sextupoles can be converted over to
SF sextupoles. Repartitioning the modules in this way would
reduce the individual SF sextupole strength and increase the in-
dividual SD sextupole strength. The horizontal dynamic aper-
ture will then increase at the expense of the vertical dynamic
aperture.

IV. APPLICATION OF MODIFIED SEXTUPOLES

After the above work with octupole correction was com-
pleted, a report on the design of modified sextupole magnets
for dynamic aperture improvement in storage rings was pub-
lished by Cornacchia and Halbach[2]. They propose reshaping
the poles of sextupoles in order to reduce the magnetic field
along a chosen transverse direction, while preserving the sex-
tupole field symmetry near the axis. Outlying particles of a
stored gaussian beam would feel a weaker nonlinear field and
follow a stabler trajectory, while the core of the beam feels the
regular sextupole field. This has the effect of increasing the dy-
namic aperture. While the chromaticity of the core of the beam
is corrected, the chromaticity of large-amplitude orbits is not.
Fortunately, the head-tail instability, for which the chromaticity
correction is needed, is a collective effect, and it’s not necessary
for all of the beam to have zero or positive chromaticity.

Cornacchia and Halbach mention many possible field distri-
butions for modified sextupoles. A modified sextupole field de-
sign that is probably the easiest to implement is the following[2]:

(15)

where z = £ + 1y, A is a constant, and & is a decay parameter

B* = B, —iB, = —iAz" exp(xz’)

to be adjusted. Because of the exp(f{z2) factor this sextupole
is called a gaussian sextupole.

If kK = 0 we have an ordinary sextupole field. For x < 0, the
sextupole field eventually decays along the horizontal axis, but
grows indefinitely along the the vertical axis, while the reverse is
true for £ > 0. It would seem that the dynamic aperture would
increase in one plane at the expense of the other. However, 3,
and @, are normally very different at sextupoles. One finds that
the SF family of sextupoles (where 8, > 8y) should have x <0,
and that the SD family of sextupoles (where 8y > f:) should
have x > 0. Since the gaussian sextupole is very non-linear
and not a simple multipole, its study using matrix elements is
difficult. It is therefore difficult to predict which absolute value
of x will improve the dynamic aperture the most for a given
lattice. A rough estimate would be to set x such that k2? =
-1 at the dynamic aperture limits measured at the sextupole
position.

I optimized by trial and error the dynamic aperture for the
damping ring, treating x for each of the sextupole families as
independent adjustable parameters. The dynamic aperture for
the optimal gaussian sextupoles with xksp = -75 m~? and «sp
= 250 m~? is shown in Figure 5. Again, the dynamic aperture
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Figure 5

Dynamic aperture with gaussian sextupole.

is limited by sextupole length effects. In this case however, the
dynamic aperture improvement along both axes (about 40%) is
better than that of octupole correction.

V. CONCLUSION

The large dynamic aperture of non-interleaved achromat-
based lattices can be improved further with correcting oc-
tupoles. The modified gaussian sextupole was also successfully
applied to the low-emittance damping ring, and may be worth
studying further.
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