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Abstract The polynomial f,,,(z) can be expanded as follows: 

In this paper, invariant metrics are constructed for 
Hamiltonian systems. These metrics give rise to norms 
on the spa.ce of homeogeneous polynomials of phase-space 
variables. For an accelerator lattice described by a Hamil- 
tonian, these norms characterize the nonlinear content of 
the lattice. Therefore, the performance of the lattice can 
be improved by minimizing the norm as a function of pa- 
rameters describing the beam-line elements in the lattice. 
A four-fold increase in the dynamic aperture of a model 
FODO cell is obtained using this procedure. 

fm(z) = .(am’dm)(*) ) (2) 

where we have used Einstein’s summation convention. 
Here Pim’(z) denotes the following mth degree basis 
monomial 

F$“‘(z) = q;‘p;” . ..qfi”p’n”. rI+‘..+?-fj=m. (3) 

The monomials are ordered using the index 421. The sum- 
mation over (Y in Eq. (2) extends from 1 to N(m) where 
N(m) is given by the relation[3] 

I. INTRODUCTION N(m) = mm+b ( > 
Given an accelerator lattice, various correction schemes 

(lumped correctors, shufIling of magnets etc.) ca.n be used 
to improve its performance. However, to be able to imple- 
ment these schemes, it is essential to have a “merit func- 
tion” (depending on the parameters describing the beam- 
line elements) that can be minimized to produce the opti- 
mal lattice. This merit function should be a reliable mea- 
sure of the nonlinearilty of the lattice since it is nonlinear 
effects that degrade the performance of the lattice and it is 
these effects that have to be minimized. In this paper, we 
propose a merit, funct,ion satisfying the above criteria. This 
function will turn out to be a positive defluite symmet- 
ric bilinear form invariant under the action of the unitary 
group U(3). 

We restrict ourselves to accelerator lattices described 
by a (nonlinear) Hamiltonian in a six-dimensional phase 
space. Given such a system, an equivalent description is 
provided by the following one-pass or one-period symplec- 
tic map [l] 

*Ax-f = hJe:fJ ,:fr: . . . e fnl . . . (1) 

Here, the G x 6 matrix hf characterizes t,he linear part 
of the map and the Lie transformations e’fnZ’ characterize 
the nonlinear part. The operator :fnl: is the Lie operat,or 
corresponding t,o t.he homogeneous polynomial f,,&(z) of 
degree m in the phase-space variables ;i (i = 1,2,. .6). 

In this paper, we will construct a symmetric positive def- 
inite bilinear form on the space spanned by homogeneous 
polynomials of degree m in phase-space variables. This 
will enable us to define a norm on this space. This norm 
will also be invariant under the action of the unit,ary group 
U(3). Since the nonlinear part of a symplectic map is spec- 
ified by homogeneous polynomials, a norm defined on the 
space of homogeneous polynomials can be used to quan- 
tify the nonlinear content of the map (or equivalently the 
lattice). Moreover, the norm is a function of parameters 
specifying the beam-line elements of the accelerator lattice 
under consideration. Therefore, one can vary these pa- 
rameters so as to minimize this norm. This should lead to 
improvements in performance of the lattice. This is shown 
to be true for a model FODO cell later in the paper. 

II. CONSTRUCTION OF INVARIANT 
METRICS 

We start by defining a bilinear form s$’ as follows 

‘Work supported in part by the U.S. Department of Energy 

gap Cm) 5 (P:“‘(z) , lp(z) ) (5) 

where (P;“‘(Z) , Pjrn’(~) ) d enotes a bilinear form defined 
on the space of basis monomials of degree m. We require 
the bilinear form to be symmetric and positive definite so 
that it. can be used to define a norm on this space. 
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Ideally, we would also require g$’ to be invariant under 
the action of all symplectic maps. Then, we would obtain 
a metric a~ unique as possible. However, this turns out to 
be impossible. The set of all symplectic maps forms a non- 
compact Lie group[l]. It can be shown that such groups 
can not have invariant metrics[4]. Only compact groups 
can have such metrics. Therefore, we are forced to impose 
a more modest requirement that the metric be invariant 
under the action of the largest compact subgroup of the 

Cm) symplectic group. We will require that gap be invariant 
under the action of the compact unitary group U(3). 

\lie define the bilinear form (Pim’(z) , Pj”“(z) ) as 
follows [3] : 

(PP(z) (P;“‘(z) ) E -&J dS25 PP(z) P/y’(*) ) 

(6) 
where dS25 is the solid angle for the 5-sphere and r2 = 
(1: + pf + . . + pi. We show that it is invariant under the 
action of U(3). C onsider the following expression 

(ilPim)(z), OPjm)(z)) = --& /d& P~)(l/z)Pf”)(Uz). 

(7) 
Here, 0 is the Lie transformation corresponding to the ele- 
ment U belonging to U(3)[3]. We change to a new variable 
z’ defined to be equal to Uz. Since the solid angle da:, is 
invariant under the action of U(3), we obtain the relation 

(~P$“‘(z) , iiPj”$) ) = --& /d&i P~~‘(z’)P,$“‘(z’) 

(8) 
Since Ii was an arbitrary element of U(3), we get the de- 
sired result 

(oPp(z) ,OPj”‘)(*) ) = (PP(*) ,p:nl)(t) ) (9) 

v u E U(3). (10) 

It is easily seen from the definition that, this bilinear form 
is symmetric. Obviously, it is also positive definite. Hence, 
Eq. (6) gives a valid invariant metric. 

This invariant metric can be evaluated as follows. Con- 
sider the following equation 

J d6z e-‘.’ p,$“$) J$$) = J drr2”~+5e-“z 

x -& J da:, ~c?)(t) ~,$““‘(f) (11) 
This is seen to be correct since we have merely reexpressed 
the infinitesimal volume element d”z in terms of the radius 
vector I’ and solid angle d&. Inserting Eq. (0) in Eq. (1 l), 
we obtain the relation 

(Ppqz) , P;‘“‘(z) ) = Sd 
62 e-‘aPp(t) P/p(z) 

[dye- rZ1.2m+5 

(12) 
Both the numerat,or and the denominator can now evalu- 
ated easily[3]. 

Using the above construction, we obtain the following 
expression for g$ (we do not list entries below the diago- 
nal; we also restrict ourselves to the four-dimensional case 
due to lack of space): 

gi’“i’ = cl i = 1, 11,17,20, 
gi”i’ zz c2 i = 2,3,4,5,8,10,12,13,14,16,18,19, 
,!3! - 
gyi -= 

cg i = 6,7,9,15, 

sr3i = si310 = gr)ll = c2, 

!A% = !$a0 = SK4 = g;& = c2, 

9(1?17 = gi$)20 = g$;)lg = g$j2() = c2 

A% = s% = &2 zz g& = c3’ 

SE3 = !7% = gri = ggo = c3’ 

9El = &'19 = g$)18 =: &6 = c3: 

Here the indices 1,2, . . .20 represent monomials q?, qTp1, 

9492, q:p2, PIP:, QlPlQZl91PlP2~ 914229 QlQ2P2> 91P22, P?, PT42: 

P?P~, PI (122, plq2p2, PIP;, q;, dp2, q2p’:, and P; respectively. 
And the constants cl, ~2, and cg have the following values 

cl = 5/64, c2 = q/5, c3 = c1/15. (13) 

III. CONSTRUCTION OF NORMS 

Using the metric defined above, we now define a norm on 
the space of homogeneous polynomials of degree m. This 
norm can then serve as a merit function that can be used 
to minimize nonlinearities of degree m. 

Each metric g$’ gives rise to a norm on the space of 
homogeneous polynomials of degree m. Consider a general 
homogeneous polynomial of degree m denoted by fm. We 
are interested in obtaining a norm for storage ring lattices. 
Since the emittances in the three degrees of freedom can 
be quite different, we normalize them by factoring out the 
betatron functions. This is achieved by going to the ss 
called normal form[l] of the linear part M of the map M. 
Let A be the symplectic transformation that takes M into 
its normal form N i.e. 

N = AMA-l (14) 

where N is a block-diagonal matrix with 2 x 2 blocks on 
the diagonal[5]. Applying the transformation A to the map 
M, we obtain the result 

nl, = AMA-1 = AMA-‘Ae:f3’e:f4: :j,,,: A-’ . ..e . . . . 
(15) 

Using Eq. (14),we get the relation 

where[l] 

hf2 = Ne.f:‘:e:r:‘: . . ,:r:. _ . (16) 

f: = Afm(~) = fm(Az). (17) 

Since A depends on M, the fz’s also now depend on the 
linear part of the map. These transformed f,,,‘s can be 
reexpressed in the original basis as follows 

f,‘(z) = a(m’Pp(z) . a (18) 
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We are now in a position to define a norm on the space 
of homogeneous polynomials 

llfmll E (f;, j-p = (bim,“)PF(z) ) bF’Pfqz) )“. 
(19) 

Using Eq. (5), we get the following result 

llfmll = (g$) &%i;“))~. (20) 
From the above equation, we see that the norm ]]fm]] is 

a function of parameters characterizing the beam-line el- 
ements in the accelerat(o; lattice that we started out with 
(since the coefficients barn are determined by these param- 
eters). Therefore, one can think of varying these parame- 
ters so as to minimize this norm. Since the norm quantifies 
the nonlinear content of the lattice, this may lead to im- 
provements in the performance of the system. We also note 
that ]]fm]]2 is a positive definite quadratic function of the 
strengths of the m-th order multipoles (e.g. ]]f3]]’ is such a 
function of the sextupole strengths). Hence l]f,,,]]’ is guar- 
anteed to have an unique global minimum as a function of 
these multipole strengths. 

IV. EXAMPLE 

In this section, we study a model FODO cell with sys- 
tematic sextupole errors to illustrate the utility of the in- 
variant metric. The FODO cell consists of the following 
elements: a thin-sextupole corrector, a drift, a focusing- 
quadrupole with fringe fields and sext,upole error, a drift, 
a thin-sextupole corrector, a drift, a defocusing-quadrupole 
with fringe fields and sextupole error, a drift, and finally, 
another thin-sextupole corrector. 

First, we turn off the correctors and compute the norm 
]lfs]]’ in a four-dimensional phase space. It has a certain 
value ( W 400 in our case). Next, we set the corrector 
strengths by minimizing the norm. The minimum is found 
to correspond roughly[b] t o setting the corrector strengths 
according to Simpson’s rule (i.e. the three strenghts are in 
the ratio 1:4:1)[7]. For th is setting, the value of ]]fs]]2 is re- 
duced (from the uncorrected case) by almost two orders of 
magnitude. To verify that third order nonlinearities have 
actually been reduced in magnitude, the dynamic aperture 
of the FODO cell was computed for these two cases. The 
dynamic aperture for the corrected case was found to be 
larger by a factor of four. 

V. SUMh4ARY 

In this paper, we constructed invariant merit functions 
for accelerator lattices described by Haniiltonians. These 
metrics were used to define norms on the space of ho- 
mogeneous polynomials of phase-space variables. These 
norms quantify the nonlinear content, of the accelerator lat- 
tice. They can be minimized as a function of parameters 
describing the beam-line elements to improve the perfor- 
mance of the lattice. Finally, we considered a model FODO 

cell with sextupole errors. By minimizing the third degree 
norm using correctors, we obtained a four-fold increase in 
the dynamic aperture. 
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