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I. INTRODUCTION

There are two sanguine {perhaps almost to the point
of naivete) and vet remarkably tacit assumptions made
in the design and construction of accelerators and stor-
age rings. The first, made by machine builders, is that
if two machines are nearly the same, their performance
(including long-term orbit stability) should be nearly the
same. Without this assumption, it would be impossible to
proceed since construction errors are unavoidable at some
level. The second, made by accelerator theorists, is that
analytical /numerical models of machine behavior, despite
their approximate nature, still have relevance for real ma-
chines. Without this assumption, it would be impossible to
design machines. From a mathematical perspective, what
is being assumed in either case 1s that if two symplectic
maps are close (in some not yet precisely defined sense),
then the behavior (including long-term behavior) of sys-
tems described by these maps should be nearly the same.
This note explores in a mathematical context, and for a
simple example, some aspects of this assumption.

Consider a nonlinear symplectic map characterizing a
nonlinear Hamiltonian system. In a Taylor series approxi-
mation, one truncates this map at a given order in phase-
space variables. Such a truncated map typically produces
spurious damping or growth when used to analyze the
long-term behavior of trajectories. This undesirable be-
havior arises from the fact that the truncated map violates
the symplectic condition. There are at least two ways of
coping with this problem. The first consists of replacing
the Taylor series with a generating function whose effect
1s 1dentical to that of the Taylor series through some or-
der (perhaps the order to which the Taylor expansion is
known}. The second is to replace the Taylor series by a
sequence of polynomial symplectic maps that can be eval-
nated exactly and whose net effect is again identical to that
of the Taylor series through some order. In either case, a
given symplectic map is being replaced by some nearby
symplectic map, and one hopes this replacement still leads
to valid conclusions.
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II. A SIMPLE SYMPLECTIC MAP

Let M be a map acting on two dimensional phase space
q,p and suppose M is written in the product form

M = R($)N. (1)

Here R(¢) denotes a linear map correspondng to rotation
by angle ¢ (a simple phase advance) in the g, p plane; and
N is a nonlinear map defined by the equations

qf:/ti:ql'(l—Pi)Q» (2)
o0
pr=Npi=piy ()" =pif(1-pi). (3)

0
Evidently A has a nonterminating Taylor expansion. It
is also symplectic. Indeed, it has been selected because it
has the simple Lie representation

N =exp:gp®:. (1)

Figure 1 shows the dynamic aperture (tracking data) for
M [1]. This figure was obtained by viewing M as a one-
turn map, and tracking for 1000 turns the initial conditions
pi=0,¢: = .1,.2,---.9. Evidently, trajectories are stable if
¢; < .6, and are unbounded if ¢; > .7. This is a remarkably
large dynamic aperture considering that, according to (3),
N is singular at p = 1.

Suppose the Taylor series (3) 1s truncated beyond terms
of degree 8. Figure 2 shows the result of tracking for the
truncated map. The truncated map is not symplectic. In
the figure this violation is first evident for the fourth “ring”
out from the center where one sees spurious damping and

on which p =~ 4. The first neglected term in the Tay-

lor series is p, and (.4)® = 2.6 x 107 In the course
of 1000 turns this error could in principle accumulate to
~ 10% x 2.6 x 1071 = 26. From the figure one sees that

the accumulated error 1s somewhat less, but of this general
order of magnitude. Consider the third ring out from the
center. On this ring p ~ .3 and (.3)* = 2 x 107°. Oune
would expect that this ring would show error effects after
10% turns since 107 x 2 x 107% = .2, This has been found
to be the case. We conclude that the Taylor approxima-
tion to M is not satisfactory for long-term tracking studies
unless terms well beyond 8¢ order are retained.
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GENERATING FUNCTION
APPROXIMATION

I11.

Suppose the map A is approximated by using a polyno-
mial generating function F(g;, py), and the results of this
generating function are required to agree with the Tay-
lor series through 3" order {2,3]. This procedure approxi-
mates A" by a map Ngen that is exactly symplectic. Indeed,
by construction Ay.n has a factored Lie product expansion
of the form

Afge,,:exp:quz exp:fs: exp:fo: -, (5)
where the homogeneous polynomials f5, fg, - - - are in gen-
eral not zero, but are hoped to have negligible effect for
trajectories of interest.

Figure 3 shows the dynamic aperture for the map
RN gen. Evidently the topological features of figures 1 and
3 are similar. However, the 4'* ring is slightly deformed,
and the rings successively farther out are successively more
deformed. Indeed, there is even a somewhat ragged 7't
ring. These deformations are presumably the effect of the
terms f5, fo - -

To study the effect of these terms, consider the map
N4 = exp : qp*/4 ;. Approximate this map by a gen-
erating function map N,,. For this map we have the
relation

N;en:exp:qu/4: exp: ft:exp:fi:i---.  (6)
where fi.-- are now at least a factor of (1/4)% smaller.
This procedure allows us to construct the improved ap-
proximation

M~ /R’(/V‘(;en )4' (7)

Figure 4 shows the dynamic aperture for the improved
approximation (7). Evidently figures 1 and 4 are remark-
ably similar. The only noticeable difference is a slightly
different nonlinear phase advance as is evident for the 5ih
ring. This agreement is all the more remarkable when one
considers that the nonlinear term 1/(1 — p) in (3) is very
significant for the outer rings.

IV. KICK APPROXIMATION

Although, as illustrated, the generating function approx-
imation works well, it is somewhat awkward computation-
ally since it involves the use of a Newton’s method proce-
dure, and this procedure may sometimes not converge. An
alternate approach is to factor the nonlinear part of a map
A into a product of special Lie maps called kick maps.
Here a kick map is defined to be one for which the expo-
nential series exp:*: terminates [3,4,5]. For the problem
at hand we have constructed a kick factorized map N of

the form
5

Nig = [[(Rie® e 10" R ) (8)

i=1

in such a way that one has the approximation
Nkf:exp:qu:exp:gg,:exp:gG:---, (9)

where the polynomials gs - - - are again hoped to have neg-
ligible effect. Here the maps R; are phase-space rotations
whose angles, along with the coefficients J;,7;, are chosen
in such a way that (9) is satisfied. Kick maps have at least
two advantages: They can be evaluated directly {no New-
ton procedure) and rapidly to machine precision; they can
be inverted exactly since their inverses are also kick maps.

Figure 5 shows the dynamic aperture for the map RNkj.
Evidently, the first 3 rings agree well with those in figure 1.
For the 4*” ring and beyond the agreement is not as good as
the generating function approximation (figure 3). What is
notable about this result is not that the kick factorization
does not work well [indeed the nonlinearities associated
with 1/(1 — p) are already large on the 374 ring where
the kick factorized approximation still works], but that the
generating function works so remarkably well.

As in the generating function example, the effect of the
terms gs - - - can be studied by kick factorizing N4 {nstead
of A and then making the approximation M =~ 71(./\/%])4
where AN, is the kick factorized approximation to N
Figure 6 shows the dynamic aperture for this map. Ev-
idently, figure 6 is nearly as close to figure 1 as figure 4
is. Thus, the kick factorization approximation also works
well.

V. CONCLUSIONS

Based on this brief exploration we draw the following
tentative conclusions: First, map approximations that vi-
olate, even in small amount, the symplectic condition, such
as truncated Taylor expansions, are not well suited to long-
term tracking studies. Second, if two symplectic maps are
sufficiently close, then at least gross features of their long-
term behavior are in fact similar. Indeed, the symplectic
approximations (./Vg’m)4 and (/V,ij)(l probably differ more
from N for asingle turn than does the truncated Taylor ex-
pansion. Yet they give far better predictions of long-term
behavior. Finally, the use of kick factorization deserves
further study. Indeed, it can be shown that for the full -
dimensional phase space symplectic maps can be approxi-
mated through 37¢ order using only 9 kicks, and through
11%* order using only 68 kicks [5]. Thus, kick factorized ap-
proximations should be ideal for realistic long-term track-
ing studies.

VI. FOOTNOTES AND REFERENCES
[1] For all the tracking studies of this note we have used
the nonresonant phase advance ¢ = 66 degrees.

[2] This is the method currently used in MARYLIE 3.0.
For MARYLIE 5.0 f5 and fs are required to vanish as
well. See the MARYLIE manual and reference 3.
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[3] A.J. Dragt et al., Ann. Rev. Nucl. Part. Sci. 38 (1988). (5] G. Rangarajan, Ph.D. Thesis (1990).
(4] J. Irwin, SSC Note 228 (1989).
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Figure 1. Tracking Results for Exact Map. Figure 4: Improved Generating Function Approximation.
1.0 1.0
0.5 — Q0.5 —
-0.5 — -0.5 —
1.0 T f . -1.0 . T .
1.0 .0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Figure 5: Kick Approximation Results.
1.0
0.5 —
0.0 p,
_0.5
-1.0 T )1< T 1.0 T )I< T
1.0 .0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0
Figure 3: Generating Function Approximation Results. Figure 6: Improved Kick Approximation.
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