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I. INTRODCCTION II. A SIMPLE SYMPLECTIC hilAP 

There are two sanguine (perhaps almost to the point 
Let M he a map acting on two dimensional phase 

of t1aivet.e) and yet remarkably tacit assumptions made 
q,p and suppose M is written in the product form 

irt the design and construction of accelerators and st#or- M = r,(c$).N-. 

Sp”Ce 

(1) 

age rings. The first, made by machine builders, is that 
if t,wo machines are nearly the same. their performance Here R(d) denotes a linear map correspondng to rotat,iott 

(including long-term orbit stabilit,y) should be nearly the by angle C$ (a simple phase advance) in the q, JJ plau~; ;\~ttl 

Sante. Witshout this assumption, it, would be impossible to n/ is a nonlin.ear map defined by the equations 

l’rocced since construction errors are unavoidable at some 
level. The second, made by accelerator theorists, is that 

‘If = ,vyi = q;( 1 - pt )’ ( (‘2) 

irttalytical/ttutnerical models of machine behavior, despite m 

their npprosimate nature, still have relevance for real tiia- ?‘f = izfp, = pi C(I,i)‘” = IA/(1 - PII. (:3) 
chines. Without this assumpt,iott, it would be impossible to (1 

tlcsign machines. From a tna.themat,ical perspective, what Evidcrttly .Y has a nonkrminatittg Taylor espnnsion. It. 

is being assumed in either case is that, if two symplect,ic is also symplectic. Indeed, it. has been srlect.cd bccausc it, 

~t~;tps are close (in some not yet, precisely defitted sense), has the simple Lie represent.at8ioii 

tllcn t,he behavior (including long-term behavior) of sys- 
tetns described by these maps should be nearly the same. .V = esp : qpa : i.4 ) 

‘I’ltis notme csplores in a tnathernat~ical contest 1 and for a 
Grnplc esnmple. some aspects of this assutnption. 

Figure I shows t,he dynatnic apert,urc (t,rncltittg ciala) for 
M [I]. Tl ‘L fb ~1s t rure was obt,aincd by viewing ,A4 as a on(~- 

(-‘onsidcr a. nonlinear sytnplect,ic map characterizing a turn ma.p, and t,racking for 1000 turns the init,ial condit.ions 

nonlinear Hamiltonian system. In a Taylor series approsi- pi = 0, pi = .l, .2, .9. Evidently, trajectories are stable if 

Irlat.ion, one truttcat,cs this map at a given order in phase- qi 5 .6, and are unbounded if qZ 2 .7. This is a remarkably 

space variables. Such a truncat~ed map typically produces large dynamic aperture considering that,, according to (8), 

spurious damping or growth whm used to analyze the N is singular at p = 1. 

long-tern1 behavior of krajectories. This undesirable be- Suppose t,he Taylor series (3) is t,runcated beyond tertrts 

lt;lvior arises from t.he fact that. the t,runcat,ed map violates of degree 8. Figure 2 shows the result, of t~racking for the 

t,lrc, symplectic condition. There are at least two ways of truncated ttiap The t~runcateti map is not symplectic. 111 
coping wit.h this problem. The first consists of replacing the figure t#his violation is first evident for the fourt,h “ring” 

l,lie Taylor series with a gcnfrating function whose effect out frotn the cenkr wlter(a one sees spurious damping and 

is itlent,ical to that of the Taylor series t,hrough some or- on which 17 2 .4. The first, neglected term in the .‘l%$- 

tlcr (perhaps the order to which t,lte Ta.ylor espansion is lor series is 1~~~ a.tid (.4)” = 2.6 x 10e4. Irt the ~OIII’JC 

I~IIOJVI~). ‘I’hc second is t,o replace t,lre Taylor series by a of 1000 turns this error could in principle accuniulatc to 

srquer~ce of polynomial symplectic maps that ca11 be eval- - 10” x ‘2.6 x 10-” = .X. From the figure one sees that 

i~attd csact,ly and whose net effect is again identical to t,ltat the accumulated error is somcwltat8 less, but, of this general 

of tltc Taylor series tkrough some order. In ritltcr case. a order of magnitude. Consider the third ring out front ~,IIc 

given symplectic map is being replaced by some nearby cenkr. Ott this ring p 2 .3 and (.3)” = L! x 10d5. 01ie 
syrnpl?ctic map, and one hopiIs t,ltis replacement, still lcads would espect, t,hat t,ltis ring would show error eff~.t,s aft (‘r 

IO valid conclusions. 1O” turns since IO” x 2 x lo-” = .2. This has been fouiitl 
t,o be the case. il’e cottcludc that t,he Taylor apprositn;t- 
t.iou t.0 M is not. sat,isfactory for long-term tracking studies 
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III. GENER.ATING FUNCTION 
APPROXIMATION 

Suppose the map A( is approximated by using a polyno- 
mial generating function F(qi,pj)< and the results of this 
generating function are required to agree with the Tay- 
lor series through 3’d order [2,3]. This procedure approxi- 
mates ,sf by a map ~$5~~ that is exactly symplectic. Indeed, 
by construction AC,,,, has a factored Lie product expansion 
of the form 

AG,, = exp : qp2 : exp : ff, : exp : fc : , (5) 

where the homogeneous polynomials fs, fc, are in gen- 
eral not zero, but are hoped to have negligible effect for 
t,rajectories of interest. 

Figure 3 shows the dynamic aperture for the map 
7?.Jvgen. Evidently the topological features of figures 1 and 
3 are similar. However, the 4’h ring is slight,ly deformed, 
and the rings successively farther out are successively more 
deformed. Indeed, there is even a somewhat ragged 71h 
ring. These deformations are presumably the effect of the 
terms fs: fe . ‘. 

To study t.he effect of these terms, consider the map 
,‘vr’/4 = exp : qy2/4 :. Approximat,e this map by a gen- 
erating function map A’;,,. For this map we have the 
relat,ion 

Jqen = exp : qp”/4 : exp : fi : esp : f; : ‘. (6) 

where f: are now at least. a factor of (1/4)3 smaller. 
This procedure allows us to construct the improved ap- 
proximation 

M 2: 7q,v;,,J. (7) 

Figure 4 shows the dynamic aperture for the improved 
approximation (7). Evident,ly figures 1 alld 4 arc remark- 
ably similar. The only noticeable difference is a slightly 
tliffercnt nonlinear phase advance as is evident. for the gfh 
ring. This agreement is all the more remarkable when one 
considers that t,he nonlinear term l/(1 - p) in (3) is very 
significant for the outer rings. 

IV. KICK APPROXIMATION 

Although, as illustrated, the generating function approx- 
imation works well, it is somewhat, awkward computatioll- 
ally since it involves the use of a Newton’s method proce- 
durc, and this procedure may sometimes not, converge. An 
nltcrnale approach is t,o factor t,he nonlinear part of a map 
,Zr int,o a product of special Lie maps called kick maps. 
llcrc~ a kick map is defined to be one for which t,he expo- 
nential series exp:*: terminat,es [3,4,5]. For t~he problem 
at hand we have constructed a kick fact,orized map ,afkr of 
t.he form 

(8) 

in such a way that one has the approximation 

JV~J = exp : qp2 : exp : g5 : exp : g6 : , (9) 

where the polynomials gs . . are again hoped t,o ha.ve neg- 
ligible effect. Here the maps Ri are phase-space rotations 
whose angles, along with the coefficients pi, yi, are chosen 
in such a way t,hat. (9) is satisfied. Kick maps have at least 
two advantages: They can be evaluated directly (no New- 
ton procedure) and rapidly to machine precision; they can 
be inverted exactly since their inverses are also kick maps. 

Figure 5 shows the dynamic aperture for the map RA’ji;, 
Evidently, the first 3 rings agree well with those in figure 1. 
For the qth ring and beyond the agreement is not as good as 
the generating function approximation (figure 3). What is 
notable a.bout this result is not that the kick factorizat,ion 
does not work well [indeed the nonlinearities associated 
with l/(1 - p) are already large on the 3’* ring where 
the kick factorized approximation still works], but that. the 
generating function works so remarkably well. 

As in the generating function example, the effect of the 
terms ~5 . can be studied by kick factorizing #I” instead 
of N and then making the approximation M 21 ‘i’Z(.~~~,)” 

where JV~, is the kick fa.ct,orized approximation t,o hrl/.‘. 
Figure 6 shows the dynamic aperture for this map. 13~ 
idently, figure 6 is nearly as close to figure 1 as figure 4 
is. Thus, the kick factorizat,ion approximation also works 
well. 

\J. CONCLUSIONS 

Based on t.his brief exploration we draw the following 
tentative conclusions: First, map approximations that vi- 
olate, even in small amount, the symplectic condition, such 
as truncated Taylor expansions, are not well suited t,o long- 
term tracking studies. Second, if two symplectic malt art’ 
suficiently close, t,lien at. least gross features of their long- 
term behavior are in fact, similar. Indeed, the symplectic 
approximat.ions (A;,, )” and (J!$,)~ probably diKf,r more’ 
from .&’ for a single turn t,han does the truncat,ed Taylor t’x- 
pansion. Yet they give far better predictions of long-term 
behavior. Finally, the use of kick factorization deserves 
further study. Indeed, it can be shown that, for the full G- 
dimensional phase space symplectic maps can be approsi- 
mated through 3’d order using only 9 kicks, and through 
1 lfh order using only 68 kicks [5]. Thus, kick factorized ap- 
proximat,ions should be ideal for realistic long-term t.racl<- 
ing studies. 

VI. FOOTI’iOTES ,4ND REFI’REKCES 

[l] For all the tracking st,udies of this note we hav(, used 
the nonresonant phase advance 4 = 66 tlcgretxs. 

[2] This is t,hc method current,ly used in hlXRYI,IE 3.0. 
For MARYLIE 5.0 fs and ,fc are required t.o vanish as 
well. See the MARYLIE manual and reference 3. 
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[3] A.J. Dragt et al., Ann. Rev. Nucl. Part. Sci. 38 (1988). [5] G. Rangarajan, Ph.D. Thesis (1990). 

[4] J. Irwin, SSC Note 228 (1989). 
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Figure 1: Tracking Results for Exact Map. Figure 4: Improved Generating Function Approximation. 
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Figure 2: Truncated Taylor Approximation Results. 

Figure 3: Generating Function Approsimat,ion Results. Figure 6: Improved Kick Approsimat,ion. 
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Figure 5: Kick Approximation Result,s. 
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